Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T02:18:46.885Z Has data issue: false hasContentIssue false

Synthesis and characterization of new layered polyoxometallates–1,10-decanediamine intercalative nanocomposites

Published online by Cambridge University Press:  03 March 2011

Guangjin Zhang
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Haohao Ke
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Tao He
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Debao Xiao
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Zhaohui Chen
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Wensheng Yang
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Jiannian Yao*
Affiliation:
Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
*
b)Address all correspondence to this author. e-mail: jnyao@iccas.ac.cn
Get access

Abstract

Hydrothermal reaction of phosphomolybdic acid (PMo12) and phosphotungstic acid (PW12) with the surfactant template 1,10-decanediamine (1,10-DAD) yielded two new nanocomposites, [C10H20(NH2)2]2·H3PMo12O40·(H2O)7.5 and [C10H20(NH2)2]2·H3PW12O40·(H2O)2.4. The produced needlelike crystals of the two nanocomposites have fine-layered structures. X-ray diffraction analyses indicate that change of polyoxometallates has little effect on the tilt angle of the 1,10-DAD molecules for such polyoxometallates–organic amine systems. Fourier transform infrared and Raman spectra show that in the hybrid, the PMo12 forms infinite two-dimensional networks, and the PW12 keeps its Keggin structure in the hybrid except distortion to some degree. The two nanocomposites show different photochromic properties; PMo12–DAD hybrid can be colored under ultraviolet irradiation, whereas PW12–DAD hybrid cannot.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kagan, C.R., Mitzi, D.B. and Dimitrakopoulos, C.D.: Science 286 945 (1999).CrossRefGoogle Scholar
2Li, H., Eddaoudi, M., O’Keeffe, M. and Yaghi, O.M.: Nature 402 276 (1999).CrossRefGoogle Scholar
3Huo, Q., Margolese, D.I., Clesla, U., Feng, P., Gler, T.E., Sleger, P., Leon, R., Petroff, P.M., Schuth, F. and Stucky, G.D.: Nature 368 317 (1994).CrossRefGoogle Scholar
4Janauer, G.G., Dobley, A., Guo, J., Zavalij, P. and Whittingham, M.S.: Chem. Mater. 8 2096 (1996).CrossRefGoogle Scholar
5Kerr, T.A., Wu, H. and Nazar, L.F.: Chem. Mater. 8 2005 (1996).CrossRefGoogle Scholar
6Wu, C.G., Degroot, D.C., Marcy, H.O., Schindler, J.L., Kannewurf, C.R., Liu, Y.J., Hirpo, W. and Kanatzidis, M.G.: Chem. Mater. 8 1992 (1996).CrossRefGoogle Scholar
7Kurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. and Day, P.: Adv. Mater. 10 545 (1998).3.0.CO;2-M>CrossRefGoogle Scholar
8Yamase, T.: Chem. Rev. 98 307 (1998).CrossRefGoogle Scholar
9Renneke, R.F., Pasquah, M. and Hill, C.L.: J. Am. Chem. Soc. 112 6585 (1990).CrossRefGoogle Scholar
10Gomez-Romero, P. and Lira-Cantu, M.: Adv. Mater. 2 144 (1997).CrossRefGoogle Scholar
11Stein, A., Fendorf, M., Jarvie, T.P., Mueller, K.T., Benesi, A.J. and Mallouk, T.E.: Chem. Mater. 7 304 (1995).CrossRefGoogle Scholar
12Ouahab, L.: Chem. Mater. 9 1909 (1997).CrossRefGoogle Scholar
13Strandberg, R.: Acta Chem. Scand. Ser. A 358 (1975).Google Scholar
14Mahmoud, S.K., Song, I.K., Duncan, D.C., Hill, C.L. and Barteau, M.A.: Inorg. Chem. 37 398 (1998).Google Scholar
15Bouhaouss, A. and Aldebert, P.: Mater. Res. Bull. 83 292 (1983).Google Scholar
16Brown, G.M., Noe-Sprilet, M.R., Busing, W.R. and Levy, H.A.: Acta Crystallogr. Sect B 33 1038 (1977).CrossRefGoogle Scholar
17Rocchiccioli-deltcheff, C., Fournier, M., Franck, R. and Thouvenot, R.: Inorg. Chem. 22 207 (1983).CrossRefGoogle Scholar
18Thouvenot, R., Fournier, M., Franck, R. and Rocchiccioli-deltcheff, C.: Inorg. Chem. 23 598 (1984).CrossRefGoogle Scholar
19Pope, M.T. and Varga, G.M.: Inorg. Chem. 5 1249 (1966).CrossRefGoogle Scholar
20Altenau, J.J., Pope, M.T. and Prados, R.A.: Inorg. Chem. 14 417 (1975).CrossRefGoogle Scholar