Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-10T08:33:44.375Z Has data issue: false hasContentIssue false

Synthesis of oxide powders by way of a polymeric steric entrapment precursor route

Published online by Cambridge University Press:  31 January 2011

My H. Nguyen
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Sang-Jin Lee
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Waltraud M. Kriven
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

A polymerized organic–inorganic complexion route is introduced for the synthesis of yttrium aluminum garnet, YAG (Y3Al5O12) and cordierite (Mg2Al4Si5O18) powders. Long-chain polymers such as polyvinyl alcohol (–[CH2–CHOH]-n or PVA) or polyethylene glycol (H[O–CH2–CH2]nOH or PEG) were used as the organic carriers for a precursor ceramic gel. Calcined powders were very porous and homogeneous in distribution of components. Experimental studies by differential thermal analysis and thermogravimetric analysis, x-ray diffraction, solid-state nuclear magnetic resonance, and Fourier transform infrared spectrometry indicated that metal-ion chelation is not the primary mechanism for obtaining molecularly homogeneous precursor powders. Water-soluble cations of mixed oxides in the PVA or PEG process were sterically entrapped in the entangled network and resulted in fine and pure, mixed oxide powders.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uhlman, D.R., Zelinski, B.J.J, and Wenk, G.E., in Better Ceramics Through Chemistry I, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Elsevier Science Publishing Co., Inc., New York, 1984), p. 59.Google Scholar
2.Pechini, M.P., U.S. Patent No. 3 330 697 (1967).Google Scholar
3.Kikihana, M., Yoshimura, M., and Mazaki, H., J. Japan Soc. Powder Metall. 43, 168 (1995).CrossRefGoogle Scholar
4.Kikihana, M., Yoshimura, M., and Mazaki, H., J. Japan Soc. Powder Metall. 40, 137 (1995).CrossRefGoogle Scholar
5.Gülgün, M.A., Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1996.Google Scholar
6.Nettleship, I., Shull, J.L., and Kriven, W.M., J. Eur. Ceram. Soc. 11, 291 (1993).CrossRefGoogle Scholar
7.Johnson, B., M.S. Thesis, University of Illinois at Urbana-Champaign, 1996.Google Scholar
8.Johnson, B.R., Gülgün, M.A., and Kriven, W.M., Ceram. Trans. 62, 313 (1995).Google Scholar
9.Huang, C.M., Kuo, D.H., Kim, Y.J., and Kriven, W.M., J. Am. Ceram. Soc. 77, 2625 (1994).CrossRefGoogle Scholar
10.Tai, L.W. and Lessing, P.A., J. Mater. Res. 7, 502 (1992).CrossRefGoogle Scholar
11.Tai, L.W., Anderson, H.U., and Lessing, P.A., J. Am. Ceram. Soc. 75, 3490 (1992).CrossRefGoogle Scholar
12.Pramanik, P., Mater. Sci. Bull. 18, 819 (1995).CrossRefGoogle Scholar
13.Pramanik, P. and Pathak, A., Mater. Sci. Bull. 17, 967 (1994).CrossRefGoogle Scholar
14.Saha, S.K., Pathak, S., and Pramanik, P., J. Mater. Sci. Lett. 14, 35 (1995).CrossRefGoogle Scholar
15.Gülgün, M.A. and Kriven, W.M., Ceram. Trans. 62, 5766 (1995).Google Scholar
16.Gülgün, M.A., Nguyen, M.H., and Kriven, W.M., J. Am. Ceram. Soc. 82, 556 (1999).CrossRefGoogle Scholar
17.Adak, A.K., Saha, S.K., and Pramanik, P., J. Mater. Sci. Lett. 16, 234 (1997).CrossRefGoogle Scholar
18.Chandramouli, V., Anthonysamy, S., Rao, P.R., Divakar, R., and Sundararaman, D., J. Nucl Mater. 231, 213 (1996).CrossRefGoogle Scholar
19.Gülgün, M.A., Popoola, O.O., and Kriven, W.M., J. Am. Ceram. Soc. 77, 531 (1994).CrossRefGoogle Scholar
20.Nguyen, M.H., M.S. Thesis, University of Illinois at Urbana-Champaign, 1997.Google Scholar
21.Kuo, D.H. and Kriven, W.M., J. Am. Ceram. Soc. Comm. 78, C3121 (1995).CrossRefGoogle Scholar
22.Kuo, D.H. and Kriven, W.M., J. Mater. Sci. Eng. A 241, 241 (1998).CrossRefGoogle Scholar
23.Kuo, D.H. and Kriven, W.M., in Interfacial Engineering for Optimized Properties, edited by Briant, C.L., Carter, C.B. and Hall, E.L. (Mater. Res. Soc. Symp. Proc. 458, Pittsburgh, PA 1997), p. 477.Google Scholar
24.Kuo, D.H. and Kriven, W.M., J. Mater. Sci. Eng. A210, 123 (1996).CrossRefGoogle Scholar
25.Kriven, W.M., Shull, J.L., Porter, W.D., and Hubbard, C.A., in Solid Phase Transformation in Inorganic Materials ′94, edited by Johnson, W.C., Hove, J.M., Laughlin, D.E., and Soffa, W.A. (TMS Warrendale, PA, 1994), p. 95.Google Scholar
26.Lee, S.J. and Kriven, W.M., J. Am. Ceram. Soc. 81, 2605 (1998).CrossRefGoogle Scholar
27.Lee, S.J., Benson, E.A., and Kriven, W.M., J. Am. Ceram. Soc. (1999, in press).Google Scholar
28.Polyvinyl Alcohol: Properties and Applications edited by C.A. Finch (John Wiley & Sons, London, 1973), p. 17.Google Scholar
29. Polyvinyl Alcohol Developments, 2nd ed., edited by C.A. Finch (John Wiley & Sons, New York, 1992), p. 1.Google Scholar
30.El-Khair, B.M., Mokhtar, S.M., Dakroury, A.Z., and Osman, M.B., J. Macromol. Sci. Phys. B33, 387 (1994).CrossRefGoogle Scholar
31.Rogers, R.D., Bond, A.H., and Bauer, C.B., Separation Sci. Tech. 28, 1091 (1993).CrossRefGoogle Scholar
32.Moritani, F., Macromolecules 10, 532 (1976).CrossRefGoogle Scholar
33.Hikichi, K. and Yasuda, M., Polym. J. (Tokyo) 19, 1003 (1987).CrossRefGoogle Scholar
34.Gowda, G., J. Mater. Sci. Lett. 5, 1029 (1986).CrossRefGoogle Scholar
35.Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H., and Hatashida, A., J. Mater. Sci. 27, 1261 (1992).CrossRefGoogle Scholar
36.Pillai, K.T., Kamat, R.V., Vaidya, V.N., and Sood, D.D., Mater. Chem. Phys. 44, 255 (1996).CrossRefGoogle Scholar
37.Dupree, R., Lewis, M.H., and Smith, M.E., J. Appl. Cryst. 21, 109 (1988).CrossRefGoogle Scholar
38.Hess, N.J., Maupin, G.D., Chick, L.A., Sunberg, D.S., Mc Creedy, D.E., and Armstrong, T.R., J. Mater. Sci. 29, 1873 (1994).CrossRefGoogle Scholar
39.Massiot, D., Coutures, J.P., and Taulelle, F., J. Magn. Reson. 90, 231 (1990).Google Scholar
40.Selvaraj, U., J. Am. Ceram. Soc. 73, 3663 (1990).CrossRefGoogle Scholar
41.Nazar, L.F. and Klein, L.C., J. Am. Ceram. Soc. Comm. 71, C85 (1988).Google Scholar
42.Alemany, L.B., J. Am. Chem. Soc. 108, 6158 (1986).CrossRefGoogle Scholar
43.Suzuki, H., Ota, K., and Saito, H., Yogyo-Kyoka Shi 95, 28 (1987).Google Scholar
44.Werckmann, J., Humbert, P., Esnouf, C., Broudic, J.C., and Vilminot, S., J. Mater. Sci. 28, 5229 (1993).CrossRefGoogle Scholar
45.Nyman, M., Caruso, J., Hampden-Smith, M.J., and Kodas, T.T., J. Am. Ceram. Soc. 80, 1231 (1997).CrossRefGoogle Scholar