Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-24T20:48:48.789Z Has data issue: false hasContentIssue false

Synthesis of single crystalline micron-sized rectangular silver bar

Published online by Cambridge University Press:  31 January 2011

Shyamal K. Saha*
Affiliation:
Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
*
a)Address all correspondence to this author. e-mail: cnssks@iacs.res.in
Get access

Abstract

The synthesis of single crystalline rectangular silver bar using polyacrylamide (PAM) and silver nitrate (AgNO3) by a hydrothermal process is reported. PAM has been used to create a reducing atmosphere as well as nucleation sites to produce silver seeds along the PAM chain. Several silver nanostructures viz. nanoparticles, growth of silver nanowires, and finally a single crystalline silver nanobar with a square cross section and of several microns in length, depending upon maturity and temperature of the hydrosol, are synthesized. At relatively lower temperatures (above 380 K) and higher pressure amide group of PAM is hydrolyzed with the liberation of ammonia (NH3), which produces a reducing atmosphere. As a result, the degraded PAM chain acts as nucleation sites to produce the assembly of silver nanocrystals along the chain. As the hydrosol becomes more and more mature, a directional growth of silver nanocrystals, called a mesocrystal, is formed. This mesocrystal is converted into single crystals due to fusion of higher energy surfaces (100) of nanocrystals to minimize the total surface energy. This growth process is completed with the formation of a single crystalline rectangular silver bar with a square cross section due to the growth of silver along the [110] direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yan, H., Park, S.H., Finkelstein, G., Reif, J.H.DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882 (2003)CrossRefGoogle ScholarPubMed
2.Ung, T., Liz-Marzn, L.M., Mulvaney, P.Optical properties of thin films of Au@SiO particles. J. Phys. Chem. B 105, 3441 (2001)CrossRefGoogle Scholar
3.Jin, R., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901 (2001)CrossRefGoogle ScholarPubMed
4.Pastoriza-Santos, I., Liz-Marzn, L.M.Synthesis of silver nanoprisms in DMF. Nano Lett. 2, (8)903 (2002)CrossRefGoogle Scholar
5.Jiang, Z.J., Liu, C.Y., Sun, L.W.Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 109, (5)1730 (2005)CrossRefGoogle ScholarPubMed
6.Wang, C., Guo, X., Wang, X., Wang, R., Hao, J.Gas-phase propylene epoxidation over Ag/TS-1 prepared in W/O microemulsion: Effects of the molar ratio of water to surfactant and the reaction temperature. Catal. Lett. 96, (1–2)79 (2004)CrossRefGoogle Scholar
7.Cao, E., Gavriilidis, A.Oxidative dehydrogenation of methanol in a microstructured reactor. Catal. Today 110, 154 (2005)CrossRefGoogle Scholar
8.Pestryakov, A.N., Bogdanchikova, N.E., Knop-Gericke, A.Alcohol selective oxidation over modiðed foam-silver catalysts. Catal. Today 91, 49 (2004)CrossRefGoogle Scholar
9.Andreasen, A., Lynggaard, H., Stegelmann, C., Stoltze, P.Simplified kinetic models of methanol oxidation on silver. Appl. Catal., A 289, 267 (2005)CrossRefGoogle Scholar
10.Qu, L., Shi, G., Wu, X., Fan, B.Facile route to silver nanotubes. Adv. Mater. 16, 1200 (2004)CrossRefGoogle Scholar
11.Lee, W., Scholz, R., Nielsch, K., Sele, U.G.A template-based electrochemical method for the synthesis of multi-segmented metallic nanotubes. Angew. Chem. Int. Ed. 44, 6050 (2005)CrossRefGoogle Scholar
12.Andersson, M., Pedersen, J.S., Palmqvist, A.E.C.Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir 21, (24)11387 (2005)CrossRefGoogle Scholar
13.Jia, H., Xu, W., An, J., Li, D., Zhao, B.A simple method to synthesize Triangular silver nanoparticles by light irradiation. Spectrochim. Acta, Part A 64, 956 (2006)CrossRefGoogle ScholarPubMed
14.Tsuji, M., Nishizawa, Y., Matsumoto, K., Kubokawa, M., Miyamae, M., Tsuji, T.Effects of chain length of polyvinyl pyrrolidone for the synthesis of silver nanostructures by a microwave-polyol method. Mater. Lett. 60, 834 (2006)CrossRefGoogle Scholar
15.Gou, L., Chipara, M., Zaleski, J.M.Convenient, rapid synthesis of Ag nanowires. Chem. Mater. 19, 1755 (2007)CrossRefGoogle Scholar
16.Gao, F., Lu, Q., Komarneni, S.Interface reaction for the self assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem. Mater. 17, (4)856 (2005)CrossRefGoogle Scholar
17.Xu, X.J., Fei, G.T., Wang, X.W., Jin, Z., Yu, W.H., Zhang, L.D.Synthetic control of large-area, ordered silver nanowires with different diameters. Mater. Lett. 61, 19 (2007)CrossRefGoogle Scholar
18.Jana, N.R., Gearheart, L., Murphy, C.J.Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 617, (2001)Google Scholar
19.Wiley, B., Herricks, T., Sun, Y., Xia, Y.Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4, (9)1733 (2004)CrossRefGoogle Scholar
20.Kan, C., Zhu, J., Zhu, X.Silver nanostructures with well controlled shapes: Synthesis, characterization and growth mechanisms. J. Phys. D: Appl. Phys. 41, 155304 (2008)CrossRefGoogle Scholar
21.Chen, C., Wang, L., Yu, H., Wang, J., Zhou, J., Tan, Q., Deng, L.Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnol. 18, 115612 (2007)CrossRefGoogle Scholar
22.Skrabalak, S.E., Wiley, B.J., Kim, M., Formo, E.V., Xia, Y.On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Lett. 8, (7)2077 (2008)CrossRefGoogle ScholarPubMed
23.Tao, A.R., Habas, S., Yang, P.Shape control of colloidal metal nanocrystals. Small 4, 310 (2008)CrossRefGoogle Scholar
24.Wang, A., Yin, H., Ren, M., Liu, Y., Jiang, T.Synergistic effect of silver seeds and organic modiðers on the morphology evolution mechanism of silver nanoparticles. Appl. Surf. Sci. 254, 6527 (2008)CrossRefGoogle Scholar
25.Wang, H., Qiao, X., Chena, X., Wang, X., Ding, S.Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 94, 449 (2005)CrossRefGoogle Scholar
26.Caulfield, M.J., Qiao, G.G., Solomon, D.H.Some aspects of the properties and degradation of polyacrylamides. Chem. Rev. 102, 3067 (2002)CrossRefGoogle ScholarPubMed
27.Gom, M.N., Ringnalda, J., Mansfield, J.F., Agarwal, A., Kotov, N., Zaluzec, N.J., Norris, T.B.Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Lett. 8, 3200 (2008)Google Scholar
28.Wiley, B.J., Chen, Y., McLellan, J.M., Xiong, Y., Li, Z.Y., Ginger, D., Xia, Y.Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 7, 1032 (2007)CrossRefGoogle ScholarPubMed
29.Mukherjee, S., Mukherjee, M.Nitrogen-mediated interaction in polyacrylamide-silver nanocomposites. J. Phys. Condens. Matter 18, 11233 (2006)CrossRefGoogle Scholar
30.Fang, J., Ding, B., Song, X., Han, Y.How a silver dendritic mesocrystal converts to a single crystal. Appl. Phys. Lett. 92, 173120 (2008)CrossRefGoogle Scholar
31.Huang, F., Zhang, H., Banfield, J.F.Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373 (2003)CrossRefGoogle Scholar
32.Korgel, B.A., Fitzmaurice, D.Self-assembly of silver nanocrystals into two-dimensional nanowires arrays. Adv. Mater. 10, 661 (1998)3.0.CO;2-L>CrossRefGoogle Scholar
33.Jiang, P., Li, S.Y., Xie, S.S., Gao, Y., Song, L.Machinable long PVP-stabilized silver nanowires. Chem. Eur. J. 10, 4817 (2004)CrossRefGoogle ScholarPubMed
34.Gao, Y., Jiang, P., Liu, D.F., Yuan, H.J., Yan, X.Q., Zhou, Z.P., Wang, J.X., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Wang, C.Y., Xie, S.S.Synthesis, characterization and self-assembly of silver nanowires. Chem. Phys. Lett. 380, 146 (2003)CrossRefGoogle Scholar
35.Kim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W., Kang, Y.S.Super lattice of Ag nanoparticles prepared by new one-step synthetic method in aqueous phase. Chem. Mater. 19, 5049 (2007)CrossRefGoogle Scholar
36.Fang, J., You, H., Kong, P., Yi, Y., Song, X., Ding, B.Dendritic silver nanostructure growth and evolution in replacement reaction. Cryst. Growth Des. 7, 864 (2007)CrossRefGoogle Scholar
37.Fang, J., Ding, B., Song, X.Self-assembly ability of building units in mesocrystal, structural, and morphological transitions in Ag nanostructures growth. Cryst. Growth Des. 8, 103616 (2008)CrossRefGoogle Scholar
38.Fang, J., Ding, B., Song, X.Self-assembly mechanism of plate like silver mesocrystal. Appl. Phys. Lett. 91, 083108 (2007)CrossRefGoogle Scholar