Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T11:45:11.726Z Has data issue: false hasContentIssue false

Thermoelectric and structural properties of high-performance In-based skutterudites for high-temperature energy recovery

Published online by Cambridge University Press:  18 July 2011

Krishnendu Biswas
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
Morris S. Good
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
Kamandi C. Roberts
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
M.A. Subramanian
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
Terry J. Hendricks*
Affiliation:
Pacific Northwest National Laboratory, MicroProducts Breakthrough Institute, Corvallis, Oregon 97330
*
a)Address all correspondence to this author. e-mail: terry.hendricks@pnl.gov
Get access

Abstract

The temperature-dependent thermoelectric (TE) and structural properties of n-type filled skutterudites were measured from 300–625 K. In0.2Co4Sb12, and In0.2Ce0.05Yb0.1Co4Sb12 exhibited figure of merit (ZT) values as high as 1.2 at 625 K and In0.2Ce0.15Co4Sb12 showed ZT values of ∼1.4 at 625 K. The room temperature Young’s modulus, Poisson’s ratio, and coefficient of thermal expansion (at 298–673 K) of In0.2Ce0.15Co4Sb12, In0.2Co4Sb12, and In0.2Ce0.05Yb0.1Co4Sb12 compositions were found to be lower than that for the unfilled Co4Sb12 skutterudite material. It was discovered that thermal cycling of n-type In0.15Ce0.1Co4Sb12 and In0.2Ce0.17Co4Sb12 materials from 323–673 K (200 cycles) actually increased their power factors by 13.6–36% at 510–525 K without appreciably changing the Young’s modulus or the Poisson’s ratio. The transport and structural properties characterized in this work are critical to transitioning these materials into operating TE devices and systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Androulakis, J., Hsu, K.-F., Pcionek, R., Kong, H., Uher, C., D’Angelo, J.J., Downey, A., Hogan, T., and Kanatzidis, M.G.: Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m. Adv. Mater. 18(9), 1170 (2006).CrossRefGoogle Scholar
2.Brown, S.R., Kauzlarich, S.M., Gascoin, F., and Snyder, G.J.: Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873 (2006).CrossRefGoogle Scholar
3.Caillat, T., Fleurial, J-P., and Borshchevsky, A.: Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 58(7), 119 (1997).CrossRefGoogle Scholar
4.Skrabek, E.A. and Trimmer, D.S.: Properties of the general TAGS system, Chap. 22, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press LLC, Boca Raton, FL, 1995).Google Scholar
5.Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., and Thompson, J.R.: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56(23), 15081 (1997).CrossRefGoogle Scholar
6.Gelbstein, Y., Dashevsky, Z., and Dariel, M.P.: High performance n-type PbTe-based materials for thermoelectric applications. Physica B 363, 196 (2005).CrossRefGoogle Scholar
7.Dughaish, Z.H.: Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B 322, 205 (2002).CrossRefGoogle Scholar
8.Shi, X., Kong, H., Li, C.-P., Uher, C., Yang, J., Salvador, J.R., Wang, H., Chen, L., and Zhang, W.: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
9.Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Yu., and Vedernikov, M.V.: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
10.Tang, X., Zhang, Q., Chen, L., Goto, T., and Hirai, T.: Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12.R: Ce, Ba, Y;M: Fe, Ni. J. Appl. Phys. 97, 093712 (2005).CrossRefGoogle Scholar
11.Hsu, K.-F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303(5659), 818 (2004).CrossRefGoogle ScholarPubMed
12.Androulakis, J., Lin, C.-H., Kong, H.-J., Uher, C., Wu, C.-I., Hogan, T., Cook, B.A., Caillat, T., Paraskevopoulos, K.M., and Kanatzidis, M.G.: Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb1-xSnxTe-PbS. J. Am. Chem. Soc. 129, 9780 (2007).CrossRefGoogle Scholar
13.Zhou, M., Li, J.-F., and Kita, T.: Nanostructured AgPbmSbTem +2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).CrossRefGoogle ScholarPubMed
14.Tritt, T.M. and Subramanian, M.A.: Thermoelectric materials, phenomena, and Applications: A bird’s eye view. MRS Bull. 31(3), 188 (2006).CrossRefGoogle Scholar
15.Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).CrossRefGoogle ScholarPubMed
16.He, T., Chen, J., Rosenfeld, H.D., and Subramanian, M.A.: Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759 (2006).CrossRefGoogle Scholar
17.Subramanian, M.A., He, T., and Krajewski, J.: U.S. Patent No. 7,723,607 (E.I. du Pont de Nemours and Company, Filed Date: April 14, 2005; Issued: May 25, 2010).Google Scholar
18.Li, H., Tang, X., Zhang, Q., and Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
19.Migliori, A. and Sarrao, J.L.: Resonant Ultrasound Spectroscopy: Applications to Physics, Material Measurements, and Nondestructive Evaluation (John Wiley & Sons, New York, 1997).Google Scholar
20.Li, H., Tang, X.F., Zhang, Q.J., and Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ nanostructured InSb phase, in Proceedings of the 2010 International Conference on Thermoelectrics, Shanghai, China, June 2010.Google Scholar
21.Graff, J.W., Peng, J.Y., He, J., Su, Z., Alboni, P.N., Zhu, S., and Tritt, T.: High temperature thermoelectric properties of Co4Sb12 based skutterudites with multiple filler: InxCeyYbz Co4Sb12, in Proceedings of the 2010 International Conference on Thermoelectrics, Shanghai, China, June 2010.Google Scholar
22.Ren, F., Case, E.D., Sootsman, J.R., Kanatzidis, M.G., Kong, H., Uher, C., Lara-Curzio, E., and Trejo, R.M.: The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Mater. 56, 5954 (2008).CrossRefGoogle Scholar
23.Laws, N. and Brockenbrough, J.R.: The effect of micro-crack systems on the loss of stiffness of brittle solids. Int. J. Solids Struct. 23(9), 1247 (1987).CrossRefGoogle Scholar
24.Budiansky, B. and O’Connell, R.J.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81 (1976).CrossRefGoogle Scholar
25.Case, E.D.: The saturation of thermomechanical fatigue in brittle materials, in Thermomechanical Fatigue and Fracture (WIT Press, Southampton, UK, 2002), pp. 137208.Google Scholar
26.Shi, X., Zhang, W., Chen, L.D., Yang, J., and Uher, C.: Theoretical study of the filling fraction limits for impurities in CoSb3. Phys. Rev. B 75, 235208 (2007).CrossRefGoogle Scholar