Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-09T14:11:31.319Z Has data issue: false hasContentIssue false

The thermopower of Nd1+xBa2−xCu3Oy in a comparative study of effects of Ba-site doping versus chain-Cu-site doping

Published online by Cambridge University Press:  31 January 2011

B. Fisher
Affiliation:
Department of Physics and Crown Center for Superconductivity, Technion, Haifa, 32000, Israel
J. Genossar
Affiliation:
Department of Physics and Crown Center for Superconductivity, Technion, Haifa, 32000, Israel
L. Patlagan
Affiliation:
Department of Physics and Crown Center for Superconductivity, Technion, Haifa, 32000, Israel
G. M. Reisner
Affiliation:
Department of Physics and Crown Center for Superconductivity, Technion, Haifa, 32000, Israel
A. Knizhnik
Affiliation:
Department of Physics and Crown Center for Superconductivity, Technion, Haifa, 32000, Israel
Get access

Abstract

We report the results of measurements of resistivity up to 300 K and of thermoelectric power up to 400 K on ceramic samples of Nd1+xBa2−xCu3Oy with 0 ≤ x ≤ 0.65. The samples were fully oxygenated; they were characterized by x-ray diffraction and iodometric titration. The results are compared with data from literature reporting on effects of substitutions on the Ba site in 1–2–3 compounds and with our earlier experiments on substitution of Co for chain Cu. The focus is on the metal-nonmetal transition and on the nonmetallic regime in all these systems. Tc and the temperature dependence of S close to the metal-nonmetal transition and in the nonmetallic state seem to be determined by a single parameter, irrespective of the nature of the dopant. This result and its implications on the electronic structure of Rba2Cu3Oy (R = Y, or lanthanide ion) will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoo, S. I., Sakai, N., Takaichi, H., Higuchi, T., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
2.Zhang, K., Dabrowski, B., Segre, C. U., Hinks, D. G., Schuller, I. K., Jorgensen, D. J., and Slaski, M., J. Phys. C 20, L935 (1987).CrossRefGoogle Scholar
3.Takita, K., Katoh, H., Akinaga, H., Nishino, M., Ishigaki, T., and Asano, H., Jpn. J. Appl. Phys. 27, L57 (1988).CrossRefGoogle Scholar
4.Van Woerden, R. A. M. and deLeeuw, D. M., Physica C 165, 221 (1990).CrossRefGoogle Scholar
5.Plackowski, T., Sulkowski, C., Bukowski, Z., Wlosewicz, D., and Rogacki, K., Physica C 254, 331 (1995).CrossRefGoogle Scholar
6.Vladimirskaya, E. V., Gasumyants, V. E., Kaidanov, V. E., Patrina, I. B., Razumeenko, M. V., Baranskaya, N. P., Kobelev, V. F., and Prikhod'ko, O. A., Physics of the Solid State 35, 1571 (1993).Google Scholar
7.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000 (1994).CrossRefGoogle Scholar
8.Lee, D. F., Partsinevelos, C. S., Presswood, R. G. Jr, and Salama, K., J. Appl. Phys. 76, 603 (1994).CrossRefGoogle Scholar
9.Obertelli, S. D., Cooper, J. R., and Tallon, J. L., Phys. Rev. B 46, 14928 (1992).CrossRefGoogle Scholar
10.Tallon, J. L., Cooper, J. R., de Silva, P. S. I. P. N., Williams, G. V. M., and Loram, J. W., Phys. Rev. Lett. 75, 4114 (1995).CrossRefGoogle Scholar
11.Carrington, A. and Cooper, J. R., Physica C 219, 119 (1994).CrossRefGoogle Scholar
12.Fisher, B., Genossar, J., Patlagan, L., Reisner, G. M., and Knizhnik, A., J. Appl. Phys. 80, 898 (1996); B. Fisher, J. Genossar, L. Patlagan, and G. M. Reisner, Phys. Rev. B 48, 16056 (1993).CrossRefGoogle Scholar
13.Kramer, M. J., Yoo, S. I., McCallum, R. W., Yelon, W. B., Xie, H., and Allenspach, P., Physica C 219, 145 (1994).CrossRefGoogle Scholar
14.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715 (1994).CrossRefGoogle Scholar
15.Wong-Ng, W., Cook, L. P., Paretzkin, B., Hill, M. D., and Stalick, J. K., J. Am. Ceram. Soc. 77, 2354 (1994).CrossRefGoogle Scholar
16.Knizhnik, A., Direktovitch, Y., Goldschmidt, D., and Eckstein, Y., Supercond. Sci. Technol. 6, 209 (1993).CrossRefGoogle Scholar
17.Singh, K. K., Morris, D. E., and Sinha, A. P. B., Physica C 224, 231 (1994).CrossRefGoogle Scholar
18.Takita, K., Akinaga, H., Ohshima, T., Takeda, Y., and Takano, M., Physica C 191, 509 (1992).CrossRefGoogle Scholar
19. See Fig. 14 in Ref. 12.Google Scholar
20. See Table II in Ref. 12.Google Scholar
21.Ouseph, P. J. and O'Bryan, M. Ray, Phys. Rev. B 41, 4124 (1990).CrossRefGoogle Scholar
22.Fisher, B., Genossar, J., Lelong, I. O., Kessel, A., and Ashkenazi, J., J. Superconductivity 1, 53 (1988); J. Genossar, B. Fisher, I. O. Lelong, J. Ashkenazi, and L. Patlagan, Physica C 157, 320 (1989).CrossRefGoogle Scholar
23. It is possible to combine the better fit at small x in Fig. 3 with that at large z in Fig. 4 by plotting the data, over the whole range of concentrations, as functions of a single variable such as z * = x − η(y − 7), with η = 1 −(ba)/(b 0a 0). Here a 0 and b 0 are the lattice parameters for x = 0.Google Scholar