Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T08:18:29.488Z Has data issue: false hasContentIssue false

A transmission electron microscopy investigation of sulfide nanocrystals formed by ion implantation

Published online by Cambridge University Press:  31 January 2011

A. Meldrum
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
E. Sonder
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
I. M. Anderson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. O. Henderson
Affiliation:
Fisk University, Department of Physics, Nashville, Tennessee 37208
Get access

Abstract

Ion implantation was used to form compound semiconductor nanocrystal precipitates of ZnS, CdS, and PbS in both glass and crystalline matrices. The precipitate microstructures and size distributions were investigated by cross-sectional transmission electron microscopy techniques. Several unusual features were observed, including strongly depth-dependent size variations of the ZnS precipitates and central void features in the CdS nanocrystals. The morphology and crystal structure of the nanocrystal precipitates could be controlled by selection of the host material. The size distribution and microstructural complexity were significantly reduced by implanting a low concentration of ions into a noncrystalline host, and by using multi-energy implants to give a flat concentration profile of the implanted elements.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alivisatos, A.P., Science 271, 933 (1996).Google Scholar
2.Goldstein, A.N., Echer, C.M., and Alivisatos, A.P., Science 256, 1425 (1992).CrossRefGoogle Scholar
3.Empedocles, S. A., Norris, D. J., and Bawendi, M. G., Phys. Rev. Lett. 77, 3873 (1996).Google Scholar
4.Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996).CrossRefGoogle Scholar
5.Krauss, T.D. and Wise, F.W., Phys. Rev. B 55, 9860 (1997).Google Scholar
6.Sukumar, V. and Doremus, R.H., Phys. Stat. Sol. B 179, 307 (1993).CrossRefGoogle Scholar
7.Tan, M., Cai, W., and Zhang, L., Appl. Phys. Lett. 71, 3697 (1997).Google Scholar
8.Tittel, J., Göhde, W., Koberling, F., Basche, Th., Kornowski, A., Weller, H., and Eychmüller, A., Phys. Chem. B 101, 3013 (1997).Google Scholar
9.Persans, P.D., Yükselici, H., Lurio, L.B., Pant, J., Stapleton, M., and Hayes, T.M., J. Non-Cryst. Sol. 203, 192 (1996).Google Scholar
10.Barghava, R.N., Gallagher, D., Hong, X., and Nurmikko, N., Phys. Rev. Lett. 72, 416 (1994).CrossRefGoogle Scholar
11.Gallagher, G., Heady, W.E., Racz, J.M., and Barghava, R.N., J. Mater. Res. 10, 870 (1995).Google Scholar
12.Yang, Y., Huang, J., Liu, S., and Shen, J., J. Mater. Chem. 7, 131 (1997).Google Scholar
13.Gurevich, S.A., Ekimov, A.I., Kudryavtsev, I.A., Osinskii, A.V., Skopina, V.I., and Chepik, D.I., Sov. Phys. Semicond. 26, 57 (1992).Google Scholar
14.White, C.W., Budai, J.D., Withrow, S.P., Zhu, J.G., Sonder, E., Zuhr, R.A., Meldrum, A., Hembree, D.M., Henderson, D.O., and Prawer, S., Nucl. Instr. Meth. Phys. Res. B141, 228 (1998).Google Scholar
15.Bawendi, M.G., Carroll, P.J., Wilson, W.L., and Brus, L.E., J. Chem. Phys. 96, 946 (1992).Google Scholar
16.Hines, M.A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).Google Scholar
17.Ekimov, A., Gurevich, S., Krudriavstev, I., Lublinskaya, O., Merkulov, A., Osinskii, A., Vatnik, M., Gandais, M., and Wang, Y., J. Cryst. Growth 151, 38 (1995).Google Scholar
18.White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Hembree, D.M., Henderson, D.O., Ueda, A., Tung, Y.S., and Mu, R., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-T., Harriott, L.R., and Sigmon, T.W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 377.Google Scholar
19.Bonafos, C., Garrido, B., López, M., Romano-Rodriguez, A., Gonzáles-Varona, O., Pérez-Rodriguez, A., and Morante, J.R., Appl. Phys. Lett. 72, 3488 (1998).CrossRefGoogle Scholar
20.Budai, J.D., White, C.W., Withrow, S.P., Chisholm, M.F., Zhu, J.G., and Zuhr, R.A., Nature 390, 384 (1997).CrossRefGoogle Scholar
21.Zhu, J.G., White, C.W., Wallis, D.J., Budai, J.D., and Withrow, S.P., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-T., Harriott, L.R., and Sigmon, T.W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 447.Google Scholar
22.Ziegler, J.F., Transport and Range of Ions in Matter, Version 96.01 (IBM-Research, Yorktown, NY, 1996).Google Scholar
23.McCaffrey, J.P., Sullivan, B.T., Fraser, J.W., and Callahan, D.L., Micron 27, 407 (1996).CrossRefGoogle Scholar
24.Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science 270, 1335 (1995).Google Scholar
25.Shiang, J.J., Kadavanich, A.V., Grubbs, R.K., and Alivisatos, A.P., J. Phys. Chem. 99, 17417 (1995).CrossRefGoogle Scholar
26.Meldrum, A., Zuhr, R.A., Sonder, E., Budai, J.D., White, C.W., Boatner, L.A., Ewing, R.C., and Henderson, D.O., Appl. Phys. Lett. 74, 697 (1999).Google Scholar
27.Johnson, E., Johansen, A., Sarholt, L., and Dahmen, U., Nucl. Instr. Meth. Phys. Res. B148, 1034 (1999).CrossRefGoogle Scholar
28.Williamson, J. and Glasser, F.P., Phys. Chem. Glasses 5, 52 (1964).Google Scholar
29.Inui, H., Mori, H., Sakata, T., and Fujita, H., J. Non-Cryst. Sol. 116, 1 (1990).Google Scholar
30.Wang, S.X., Wang, L.M., Ewing, R.C., and Doremus, R.H., J. Non-Cryst. Sol. 238, 198 (1998).Google Scholar
31.Qin, L.C. and Hobbs, L.W., J. Non-Cryst. Sol. 192&193, 456 (1995).Google Scholar
32.Borodin, V.A., Heinig, K-H., and Reiss, S., Phys. Rev. B 56, 5332 (1997).Google Scholar
33.Reiss, S. and Heinig, K.H., Nucl. Instr. Meth. Phys. Res. B 84, 229 (1994).Google Scholar
34.Arnold, G.W., Mazzoldi, P., Tramontin, L., Boscolo-Boscoletto, A., and Battaglin, G., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M., Harriott, L.R., Herbots, N., Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 285.Google Scholar
35.Katano, Y., Hojou, K., Nakazawa, T., Aruga, T., Yamaki, D., and Noda, K., Nucl. Instr. Meth. Phys. Res. B141, 411 (1997).Google Scholar
36.Gieselmann, K. and Simon, D., J. Nucl. Mater. 203, 83 (1993).Google Scholar
37.Murphy, S.M. and Stokes, A., J. Nucl. Mater. 172, 169 (1990).Google Scholar
38.Specht, E.D., Walko, D.A., and Zinkle, S.J., in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Haynes, T.E., Cabe, P., and Dickenson, J.E. Jr (Mater. Res. Soc. Symp. Proc. 321, Pittsburgh, PA, 1994), p. 399.Google Scholar
39.Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).Google Scholar
40.Wong-Leung, J., Williams, J.S., Elliman, R.G., Nygren, E., Eaglesham, D.J., Jacobson, D.C., and Poate, J.M., Nucl. Instr. Meth. Phys. Res. B96, 253 (1995).Google Scholar
41.Follstaedt, D.M., Myers, S.M., Petersen, G.A., and Medernach, J.W., J. Electr. Mater. 25, 151 (1996).Google Scholar
42.Follstaedt, D.M., Appl. Phys. Lett. 62, 1116 (1993).CrossRefGoogle Scholar
43.Raineri, V., Fallica, P.G., Percolla, G., Battaglia, A., Barbagallo, M., and Campisano, S.U., J. Appl. Phys. 78, 3727 (1995).Google Scholar
44.Davies, J.A., Lennard, W.N., and Mitchell, I.V., in Handbook of Modern Ion Beam Materials Analysis, edited by Tesmer, J.R. and Nastasi, M. (Materials Research Society, Pittsburgh, PA, 1995), p. 343.Google Scholar
45.White, C.W., Zhou, D.S., Zuhr, R.A., and Magruder, R.H., in Laser and Ion Beam Modification of Materials, edited by Yamada, I., Ishiwara, H., Kamijo, E., Kawai, T., Allen, C.W., White, C.W. (Trans. Mater. Res. Soc. Jpn. 17, 1994) p. 553.Google Scholar
46.White, C.W., Zhou, D.S., Budai, J.D., Zuhr, R.A., Magruder, R.H., and Osborne, D.H., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R., Holland, O.W., Jones, K.S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994) p. 499.Google Scholar
47.Honda, S., Modine, F.A., Meldrum, A., Budai, J.D., Haynes, T.E., Boatner, L.A., and Gea, L.A., in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G., Ewing, R.C., and Williams, J. (Mater. Res. Soc. Symp. Proc. 540, Pittsburgh, PA, 1999), pp. 225230.Google Scholar