Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T21:20:01.448Z Has data issue: false hasContentIssue false

X-ray diffractometry investigation for ion-exchange properties on alpha-type manganese dioxides

Published online by Cambridge University Press:  31 January 2011

Yasuo Tanaka
Affiliation:
Seawater Science Research Laboratory, Japan Tobacco Inc., 4–13–20 Sakawa, Odawara, Kanagawa 256, Japan
Get access

Abstract

Two materials of α-type manganese dioxide were synthesized and examined. They were prepared by the pyrolysis of mixtures of MnCO3 and (CH3)3COK. An ill-ordered material was obtained when prepared at large (CH3)3COK content. Both samples behave as acids, but their apparent capacities are obviously different: about 0.9 meq/g for a well-ordered sample and about 2.6 meq/g for an ill-ordered sample. Ion-exchange properties were examined on Kielland's plot. Zero intersections of the two samples are almost the same but slopes are different (about −50 for a well-ordered sample and about −10 for an ill-ordered sample). The difference in slope is likely caused by the flexibility. An evidence of the flexibility can be seen by x-ray diffractometry.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Krauskope, K. B., Geochim. Cosmochim. Acta 9, 1 (1956).CrossRefGoogle Scholar
2.Loganathan, P. and Burau, R.G., Geochim. Cosmochim. Acta 37, 1277 (1973).CrossRefGoogle Scholar
3.Sreenivas, B. L. and Roy, R., Econ. Geol. 56, 198 (1961).CrossRefGoogle Scholar
4.Bigliocca, C., Girardi, F., Pauly, J., and Sabbioni, E., Anal. Chem. 39, 1634 (1967).CrossRefGoogle Scholar
5.McKenzie, R. M., Min. Mag. 38, 493 (1971).CrossRefGoogle Scholar
6.Vesely, V. and Pekarek, V., Talanta 19, 219 (1972).CrossRefGoogle Scholar
7.Tsuji, M. and Abe, M., Solv. Extr. Ion Exch. 2, 253 (1984).CrossRefGoogle Scholar
8.Tsuji, M., Komarneni, S., and Abe, M., Solv. Extr. Ion Exch. 11, 143 (1993).CrossRefGoogle Scholar
9.Tsuji, M. and Abe, M., Bull. Chem. Soc. Jpn. 58, 1109 (1985).CrossRefGoogle Scholar
10.Tsuji, M. and Komarneni, S., J. Mater. Res. 8, 611 (1993).CrossRefGoogle Scholar
11.Tsuji, M. and Komarneni, S., J. Mater. Res. 8, 3145 (1993).CrossRefGoogle Scholar
12.Byström, A. and Byström, A. M., Acta Crystallogr. 3, 146 (1950).CrossRefGoogle Scholar
13.Tanaka, Y. and Tsuji, M., Mater. Res. Bull. 29, 1183 (1994).CrossRefGoogle Scholar
14.Gaines, G. L. and Thomas, H. C., J. Chem. Phys. 21, 714 (1953).CrossRefGoogle Scholar
15.Barrer, R. M. and Klinowski, J., J. Chem. Soc. Faraday Trans. I 70, 2080 (1974).CrossRefGoogle Scholar
16.Kielland, J., J. Soc. Chem. Ind. 54, 232T (1935).Google Scholar
17.Tsuji, M., Kaneko, H., and Tamaura, Y., J. Chem. Soc. Faraday Trans. 89, 851 (1993).CrossRefGoogle Scholar
18.Kaneko, H., Tsuji, M., and Tamaura, Y., Solv. Extr. Ion Exch. 11, 693 (1993).CrossRefGoogle Scholar
19.Samuelson, O., Ion Exchangers in Analytical Chemistry (John Wiley / Sons, Inc., New York, 1953), pp. 117, 121.Google Scholar
20.Tsuji, M. and Komarneni, S., J. Am. Ceram. Soc. 72, 1668 (1989).Google Scholar
21.Tsuji, M., Komarneni, S., Tamaura, Y., and Abe, M., Mater. Res. Bull. 27, 741 (1992).CrossRefGoogle Scholar
22.Barri, S. A. I. and Rees, L. V. C., Chromatog, J.. 201, 21 (1980).Google Scholar
23.Harjula, R., Dyer, A., Pearson, S. D., and Townsend, R. P., J. Chem. Soc. Faraday Trans. 88, 1591 (1992).CrossRefGoogle Scholar
24.Barrer, R. M. and Villiger, H., Z. Kristallogr. 128, 352 (1969).CrossRefGoogle Scholar
25.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Co. Inc., New York, 1978), 2nd ed., pp. 121, 127.Google Scholar