Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-09T18:54:12.373Z Has data issue: false hasContentIssue false

AlN nanowires for Al-based composites with high strength and low thermal expansion

Published online by Cambridge University Press:  31 January 2011

Y.B. Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.Q. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
C.H. Sun
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
H.T. Cong*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: htcong@imr.ac.cn
Get access

Abstract

Based on the synthesis of a sufficient amount of AlN nanowires (AlN-NWs), AlN-NWs/Al composites with homogenously distributed AlN-NWs were fabricated. Microstructural observations reveal that the interface between AlN-NWs and Al matrix is clean and bonded well, and no interfacial reaction product was formed at the nanowire-matrix boundary. Mechanical properties including yield and tensile strength of the composites were improved with AlN-NWs volume fraction changing from 5 to 15 vol%, and the maximum yield and tensile strengths of the composite were about 6 and 5 times, respectively, as high as those of Al matrix. Meanwhile, AlN-NWs effectively decreased the coefficient of thermal expansion (CTE) of the composites, and the CTE of 15 vol% composite was about one half that of Al matrix. The results obtained suggest that AlN nanowire is a promising reinforcement for optimizing the mechanical and thermal properties of metal matrix composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, S.: Helical microtubules of graphitic carbon. Nature 56, 354 1991Google Scholar
2Morales, A.M.Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 1998CrossRefGoogle ScholarPubMed
3Pan, Z.W., Dai, Z.R.Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 2001CrossRefGoogle ScholarPubMed
4Zhan, G., Kuntz, J.D., Garay, J.E.Mukherjee, A.K.: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl. Phys. Lett. 83, 1228 2003Google Scholar
5Ci, L.Bai, J.: Novel micro/nanoscale hybrid reinforcement: multiwalled carbon nanotubes on SiC particles. Adv. Mater. 16, 2021 2004CrossRefGoogle Scholar
6Yang, W., Araki, H., Tang, C., Thaveethavorn, S., Kohyama, A., Suzuki, H.Noda, T.: Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater. 17, 1519 2005CrossRefGoogle Scholar
7Geiger, A.L.Jackson, M.: Low-expansion MMCs boost avionics. Adv. Mater. Process. 136, 23 1989Google Scholar
8Zweben, C.: Metal-matrix composites for electronic packaging. JOM 44, 15 1992CrossRefGoogle Scholar
9Premkumar, M.K., Hunt, W.H. Jr.Sawtell, R.R.: Aluminum composite materials for multichip modules. JOM 44, 24 1992CrossRefGoogle Scholar
10Bradshaw, S.M.Spicer, J.L.: Combustion synthesis of aluminum nitride particles and whiskers. J. Am. Ceramic. Soc. 82, 2293 1999CrossRefGoogle Scholar
11Huang, J.L.Li, C.H.: Microstructure and mechanical properties of aluminum nitride aluminum composite. J. Mater. Res. 9, 3153 1994Google Scholar
12Lai, S.W.Chung, D.D.: Superior high-temperature resistance of aluminum nitride particle-reinforced aluminum compared to silicon-carbide or alumina particle-reinforced aluminum. J. Mater. Sci. 29, 6181 1994CrossRefGoogle Scholar
13Chedru, M., Chermant, J.L.Vicens, J.: Thermal properties and Young’s modulus of Al-AlN composites. J. Mater. Sci. Lett. 20, 893 2001Google Scholar
14Inoue, A., Nosaki, K., Kim, B.G., Yamaguchi, T.Masumoto, T.: Mechanical strength of ultra-fine Al-AlN composites produced by a combined method of plasma-alloy reaction, spray deposition and hot pressing. J. Mater. Sci. 28, 4398 1993CrossRefGoogle Scholar
15Vicens, J., Chedru, M., Cubero, H.Chermant, J.L.: Effects of AlN additions and heat treatments on the compression behavior of Al-AlN composites. J. Mater. Sci. Lett. 21, 1505 2002Google Scholar
16Zhang, Q., Chen, G., Wu, G., Xiu, Z.Luan, B.: Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Mater. Lett. 57, 1453 2003Google Scholar
17Chen, X.Gonsalves, K.E.: Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process. J. Mater. Res. 12, 1274 1997CrossRefGoogle Scholar
18Zhang, Q., Wu, G., Sun, D.Luan, B.: Study on the thermal expansion and thermal cycling of AlNp/Al composites. J. Mater. Sci. Technol. 57, 1453 2003Google Scholar
19Moya, J.S., Iglesias, J.E., Limpo, J., Escrina, J.A., Makhonin, N.S.Rodriguez, M.A.: Single crystal AlN fibers obtained by self-propagating high-temperature synthesis (SHS). Acta Mater. 45, 3089 1997Google Scholar
20Caceres, P.G.: Morphology and crystallography of aluminum nitride whiskers. J. Am. Ceram. Soc. 77, 977 1994CrossRefGoogle Scholar
21Haber, J.A., Gibbons, P.C.Buhro, W.E.: Morphologically selective synthesis of nanocrystalline aluminum nitirde. Chem. Mater. 10, 4062 1998Google Scholar
22Zhang, Y.J., Liu, J., He, R.R., Zhang, Q., Zhang, X.Z.Zhu, J.: Synthesis of aluminum nitride nanowires from carbon nanotubes. Chem. Mater. 13, 3899 2001CrossRefGoogle Scholar
23Liu, J., Zhang, X., Zhang, Y., He, R.Zhu, J.: Novel synthesis of AlN nanowires with controlled diameters. J. Mater. Res. 16, 3133 2001CrossRefGoogle Scholar
24Wu, Q., Hu, Z., Wang, X., Lu, Y., Chen, X., Xu, H.Chen, Y.: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125, 10176 2003CrossRefGoogle ScholarPubMed
25Yin, L.W., Bando, Y., Zhu, Y.C., Li, M.S., Tang, C.C.Golberg, D.: Single-crystalline AlN nanotubes with carbonlayer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv. Mater. 17, 213 2005CrossRefGoogle Scholar
26Zhao, Q., Zhang, H., Xu, X., Wang, Z., Xu, J., Yu, D., Li, G.Su, F.: Optical properties of highly ordered AlN nanowire arrays grown on sapphire substrate. Appl. Phys. Lett. 86, 193101 2005Google Scholar
27Shi, S.C., Chen, C.F., Chattopadhyay, S., Lan, Z.H., Chen, K.H.Chen, L.C.: Growth of single-crystalline wurtzite aluminum nitride nanotips with a self-selective apex angle. Adv. Funct. Mater. 15, 781 2005Google Scholar
28He, J.H., Yang, R., Chueh, Y.L., Chou, L.J., Chen, L.J.Wang, Z.L.: Aligned AlN nanorods with multi-tipped surfaces-growth, field-emission, and cathodoluminescence properties. Adv. Mater. 18, 650 2006Google Scholar
29Tang, Y.B., Cong, H.T., Wang, Z.M.Cheng, H.M.: Synthesis of rectangular cross-section AlN nanofibers by chemical vapor deposition. Chem. Phys. Lett. 416, 171 2005Google Scholar
30Zhong, R., Cong, H.Hou, P.: Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848 2002CrossRefGoogle Scholar
31Dhingra, A.K.Fishman, S.G.: Interfaces in Metal-Matrix Composites Metallurgical Society Inc. New Orleans, LA 1986 211Google Scholar
32Piggott, M.R.: Load-Bearing Fibre Composites Pergamon Press Inc. New York 1980Google Scholar
33Wong, E.W., Sheehan, P.E.Lieber, C.M.: Nanobeam mechanics: Elasticity, s trength, and toughness of nanorods and nanotubes. Science 277, 1971 1997CrossRefGoogle Scholar
34Mitra, R., Chiou, W.A., Fine, M.E.Weertman, J.R.: Interfaces in as-extruded XD Al/TiC and Al/TiB2 metal matrix. J. Mater. Res. 8, 2380 1993CrossRefGoogle Scholar
35Nardone, V.C.Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Mater. 20, 43 1986CrossRefGoogle Scholar
36Ryu, H.J., Cha, S.I.Hong, S.H.: Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J. Mater. Res. 18, 2851 2003CrossRefGoogle Scholar
37Sun, X.K., Cong, H.T., Sun, M.Yang, M.C.: Preparation and mechanical properties of highly densified nanocrystalline Al. Metall Mater. Trans. A 31, 1017 2000CrossRefGoogle Scholar
38Shen, Y.L., Needleman, A.Suresh, S.: Coefficient of thermal expansion of metal-matrix composites for electronic packaging. Metall. Mater. Trans. A 25, 839 1994Google Scholar
39Lemieux, S., Elomari, S., Nemes, J.A.Skibo, M.D.: Thermal expansion of isotropic Duralcan metal-matrix composites. J. Mater. Sci. 33, 4381 1998Google Scholar