Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-28T00:25:34.888Z Has data issue: false hasContentIssue false

Amorphization and disordering of the Ni3Al ordered intermetallic by mechanical milling

Published online by Cambridge University Press:  31 January 2011

J. S. C. Jang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
C. C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
Get access

Abstract

The ordered fcc intermetallic compound Ni3Al was mechanically milled in a high energy ball mill. The severe plastic deformation produced by milling induced transformations with increasing milling time as follows: ordered fcc → 2; disordered fcc → 2; nanocrystalline fcc + amorphous. The milling time for complete disordering occurred at 5 h for stoichiometric Ni3Al milled at ambient temperature compared to 50 h for the first observation of an amorphous structure. The structural and microstructural evolution with milling time was followed by x-ray diffraction, TEM, hardness, and calorimetry. The major defect believed responsible for inducing the crystalline-to-amorphous transformation is the fine grain boundary structure with nanometer (∼2 nm diameter) dimensions. The calculated interfacial free energy of the grain boundaries is consistent with the estimated free energy difference between the fcc and amorphous phases in Ni3Al.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1‘”Solid State Amorphizing Transformations”, Proc. of Conf. on Solid State Amorphizing Transformations, Los Alamos, NM, August 1013, 1987, edited by Schwarz, R. B. and Johnson, W. L.; also in J. Less-Common Metals, 140, Elsevier Sequoia S.A., Lausanne, 1988.CrossRefGoogle Scholar
2Weeber, A. W. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar
3White, R. L.: Ph.D. Dissertation, Stanford University, 1979.Google Scholar
4Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. D., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
5Benjamin, J. S. and Volin, T. E., Metall. Trans. 5, 1929 (1974).CrossRefGoogle Scholar
6Davis, R. M., McDermott, B. T., and Koch, C. C., Metall. Trans. A 19A, 2867 (1988).CrossRefGoogle Scholar
7Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
8Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
9Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
10Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
11Koch, C. C. and Kim, M. S., J. Phys. (Paris), Colloq. 46, C8573 (1985).CrossRefGoogle Scholar
12Bormann, R. (private communication), 1987.Google Scholar
13Petzoldt, F., J. Less-Common Metals 140, 85 (1988).CrossRefGoogle Scholar
14Ermakov, A. E., Yurchikov, E. E., and Barinov, V. A., Phys. Met. Metall. 52, 50 (1981).Google Scholar
15Luzzi, D. E. and Meshii, M., Res. Mechanica 21, 207 (1987).Google Scholar
16Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiation Effects 77, 273 (1983).CrossRefGoogle Scholar
17Hung, L. S., Nastasi, M., Gyulai, J., and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).CrossRefGoogle Scholar
18Liu, H. C. and Mitchell, T. E., Acta Metall. 32, 863 (1983).CrossRefGoogle Scholar
19Ivanov, E., Grigorieva, T., Golubkova, G., Boldyrev, V., Fasman, A. B., Mikhailenko, S. D., and Kalinina, O. T., Mater. Lett. 7, 51 (1988).CrossRefGoogle Scholar
20Koch, C. C., Jang, J.S.C., and Lee, P.Y., in Proc. DGM Conf. on New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L., Calw-Hirsau, Oct. 1988 (DGM Informations-gesellschaft, Oberursel, 1989), p. 101.Google Scholar
21Koch, C. C., to be published in Reactivity of Solids, 1989.Google Scholar
22Kissinger, H. E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
23Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 386.Google Scholar
24Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1963).Google Scholar
25Warren, B. E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 264.Google Scholar
26Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1963), p. 124.Google Scholar
27Warren, B. E. and Averbach, B. L., J. Appl. Phys. 21, 595 (1950).CrossRefGoogle Scholar
28Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
29Enzo, S., Sampoli, M., Cocco, G., Schiffini, L., and Battezzati, L., Phil. Mag. B 59, 169 (1989).CrossRefGoogle Scholar
30Stoloff, N. S. and Davies, R. G., Prog, in Mater. Sci. 13, 3 (1966).Google Scholar
31Santandrea, R. P., Behrens, R. G., and King, M. A., in High Temperature Ordered Intermetaliic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., MRS Conf. Proc. (MRS, Pittsburgh, PA, 1987), Vol. 81, p. 467.Google Scholar
32Kaufman, L. and Bernstein, H., in Computer Calculation of Phase Diagrams (Academic Press, New York, 1970), Chap. 11.Google Scholar
33Miedema, A. R., Philips Tech. Rev. 36, 217 (1976).Google Scholar
34Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
35CRC Handbook of Chemistry and Physics, 65th ed., edited by Weast, R. C. (CRC Press Inc., Boca Raton, FL, 1985), p. D-43.Google Scholar
36Turnbull, D., J. Appl. Phys. 21, 1122 (1950).Google Scholar
37Weeber, A. W., J. Phys. F 17, 809 (1987).CrossRefGoogle Scholar
38Buschow, K. H. J., J. Appl. Phys. 56, 15 (1984).CrossRefGoogle Scholar
39Kaufman, L. and Nesor, H., CALPHAD 2, 325 (1978).CrossRefGoogle Scholar
40Kaufman, L. and Nesor, H., Metall. Trans. 5, 1617 (1974).CrossRefGoogle Scholar
41Kaufman, L. and Nesor, H., Metall. Trans. 5, 1623 (1974).CrossRefGoogle Scholar
42Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
43Kubaschewski, O., Trans. Faraday Soc. 54, 814 (1958).CrossRefGoogle Scholar
44Hansen, M. and Anderko, K., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 119.Google Scholar
45Corey, C. L. and Potter, D. I., J. Appl. Phys. 38, 3894 (1967); J.P. Clark and G. P. Mohanty, Scripta Metall. 8, 959 (1974).CrossRefGoogle Scholar
46Carpenter, L. J. C. and Schulson, E. M., Scripta Metall. 15, 549 (1981).CrossRefGoogle Scholar
47Baker, I., Viens, D. V., and Schulson, E. M., J. Mater. Sci. 19, 1799 (1984).CrossRefGoogle Scholar
48Langford, G. and Cohen, M., Trans. ASM 62, 623 (1969).Google Scholar
49Chen, S. P., Srolovitz, D. J., and Voter, A. F., J. Mater. Res. 4, 62 (1989).CrossRefGoogle Scholar
50Bremer, F. J., Beyss, M., Karthans, E., Hellwig, A., Schober, T., Welter, J-M., and Wenz, H., J. Crystal Growth 87, 185 (1988).CrossRefGoogle Scholar
51Gaffet, E. and Harmelin, M., J. Less-Common Metals (to be published), 1989.Google Scholar
52Veprek, S., Iqbal, Z., and Sarott, F-A., Phil. Mag. B 45, 137 (1982).CrossRefGoogle Scholar
53Pavlov, V. A., Antonova, O. V., Adakhovskig, A. P., Kuranov, A. A., Alyab'ev, V. M., and Deryagin, A. I., Phys. Met. Metall. 58, 158 (1984).Google Scholar
54Pavlov, V. A., Phys. Met. Metall. 59, 1 (1985).Google Scholar