Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T17:10:58.835Z Has data issue: false hasContentIssue false

Anomalous wetting of Ti–48 at.% Al–2 at.% Cr–2 at.% Nb substrates by liquid copper

Published online by Cambridge University Press:  31 January 2011

W. F. Gale
Affiliation:
Materials Research and Education Center, Auburn University, 201 Ross Hall, Auburn, Alabama 36849
Y. Shen
Affiliation:
Materials Research and Education Center, Auburn University, 201 Ross Hall, Auburn, Alabama 36849
J. W. Fergus
Affiliation:
Materials Research and Education Center, Auburn University, 201 Ross Hall, Auburn, Alabama 36849
X. Wen
Affiliation:
Materials Research and Education Center, Auburn University, 201 Ross Hall, Auburn, Alabama 36849
Get access

Abstract

Conventionally, the wetting of metallic substrates by liquid metals involves undermining of the substrate–oxide layer by the liquid. Evidence is presented here for an alternative wetting process involving spreading of liquid copper along the exterior of the oxide layer on Ti–48 at.% Al–2 at.% Cr–2 at.% Nb substrates. A mechanism is presented that involves compositional changes in the liquid, which in turn allow a wetting-promoting reaction between the (initially unreactive) liquid and the exterior layer of the substrate oxide.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dimiduk, D.M., Miracle, D.B., and Ward, C.H., Mater. Sci. Technol. 8, 367 (1992).CrossRefGoogle Scholar
2.Sheward, G.E., High Temperature Brazing in Controlled Atmospheres (Pergamon Press, Oxford, United Kingdom, 1985).Google Scholar
3.Duvall, D.S., Owczarski, W.A., and Paulonis, D.F., Weld. J. 53, 203 (1974).Google Scholar
4.Ambrose, J.C., Nicholas, M.J., Young, N., and Jenkins, S.L., Mater. Sci. Technol. 6, 1021 (1990).CrossRefGoogle Scholar
5.Gale, W.F. and Wallach, E.R., J. Mater. Sci. 28, 243 (1993).Google Scholar
6.Thorsen, K.A., Fordsmand, H., and Praestgaard, P.L., Weld. J. (Res. Suppl.) 63, 339s (1984).Google Scholar
7.Gale, W.F. and Wallach, E.R., J. Mater. Sci. 27, 5653 (1992).Google Scholar
8.Aksay, I.A., Hoge, C.E., and Pask, J.A., J. Phys. Chem. 78, 1178 (1974).Google Scholar
9.Meier, G.H., Birks, N., Pettit, F.S., Perkins, R.A., and Grabke, H.J., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (Minerals, Metals, and Materials Society, Warrendale, PA, 1993), pp. 861877.Google Scholar
10.Becker, S., Rahmel, A., Schorr, M., and Schütz, M., Oxidat. Metals 38, 425 (1992).CrossRefGoogle Scholar
11.Takasaki, A., Ojima, K., Taneda, Y., Hoshiya, T., and Mitsuhashi, A., J. Mater. Sci. 28, 1067 (1993).Google Scholar
12.Copland, E., Gleeson, B., and Young, D.J., in High Temperature Corrosion and Materials Chemistry, edited by Hou, P.Y., McNallan, M.J., Oltra, R., Opila, E.J., and Shores, D.A. (Electrochemical Society, Pennington, NJ, 1998), pp. 446457.Google Scholar
13.Lang, C. and Schütze, M., Oxidat. Metals 46, 255 (1996).CrossRefGoogle Scholar
14.Figge, U., Elschner, A., Zheng, N., Schuster, H., and Quadakkers, W.J., Fresenius J. Anal. Chem. 346, 75 (1993).Google Scholar
15.Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Robert R. Krieger Publishing Co., Malabar, FL, 1983) pp. 137152.Google Scholar
16.Chase, M.W. Jr, Davies, C.A., Downey, J.R. Jr, Frurip, D.J., McDonald, R.A., and Syverud, A.N., J. Phys. Chem. Ref. Data, 14 (Suppl. 1), (1985), pp. 156, 1659, 1681.Google Scholar
17.Rahmel, A. and Spencer, P.J., Oxidat. Metals 35, 53 (1991).Google Scholar
18.Luthra, K.L., Oxidat. Metals 36, 475 (1991).Google Scholar
19.Taylor, T.N. and Paffett, M.T., Mater. Sci. Eng. A 153, 584 (1992).Google Scholar
20.Gale, W.F., JOM 51(2), 49 (1999).CrossRefGoogle Scholar
21.Gale, W.F., Fergus, J.W., Ingram, W.M., and Koupman, M., J. Mater. Sci. 32, 4931 (1997).Google Scholar