Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T12:31:01.190Z Has data issue: false hasContentIssue false

Artificially nanostructured n-type SiGe bulk thermoelectrics through plasma enhanced growth of alloy nanoparticles from the gas phase

Published online by Cambridge University Press:  07 June 2011

N. Stein*
Affiliation:
Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
N. Petermann
Affiliation:
Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
R. Theissmann
Affiliation:
Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
G. Schierning
Affiliation:
Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
R. Schmechel
Affiliation:
Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
H. Wiggers
Affiliation:
Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
*
a)Address all correspondence to this author. e-mail: niklas.stein@uni-due.de
Get access

Abstract

SiGe alloys belong to the class of classic high temperature thermoelectric materials. By the means of nanostructuring, the performance of this well-known material can be further enhanced. Additional grain boundaries and point defects added to the alloy structure result in a strong decrease in thermal conductivity because of reduced lattice contribution to the overall thermal conductivity. Hence, the figure of merit can be increased. To obtain a nanostructured bulk material, a nanosized raw material is essential. In this work, a new approach toward nanostructured SiGe alloys is presented where alloyed nanoparticles are synthesized from a homogeneous mixture of the respective precursors in a microwave plasma reactor. As-prepared nanoparticles are compacted to a dense bulk material by a field assisted sintering technique. A figure of merit of zT = 0.5 ± 0.09 at 450 °C and a peak zT of 0.8 ± 0.15 at 1000 °C could be achieved for a nanostructured, 0.8% phosphorus-doped Si80Ge20 alloy without any further optimization.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Majumdar, A.: Thermoelectricity in semiconductor nanostructures. Science 303, 777 (2004).CrossRefGoogle ScholarPubMed
2.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
3.Lan, Y., Minnich, A.J., Chen, G., and Ren, Z.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
4.Yan, X., Joshi, G., Liu, W., Lan, Y., Wang, H., Lee, S., Simonson, J.W., Poon, S.J., Tritt, T.M., Chen, G., and Ren, Z.F.: Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 11, 556 (2011).CrossRefGoogle ScholarPubMed
5.Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial, J.-P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Mater. (19, 2445 (2009).Google Scholar
6.Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).CrossRefGoogle ScholarPubMed
7.Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., and Shakouri, A.: “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711 (2009).CrossRefGoogle ScholarPubMed
8.Wang, X.W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D.Z., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008).CrossRefGoogle Scholar
9.Zhu, G.H., Lee, H., Lan, Y.C., Wang, X.W., Joshi, G., Wang, D.Z., Yang, J., Vashaee, D., Guilbert, H., Pillitteri, A., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys. Rev. Lett. 102, 196803 (2009).CrossRefGoogle ScholarPubMed
10.Gurav, A., Kodas, T., Pluym, T., and Xiong, Y.: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
11.Knipping, J., Wiggers, H., Rellinghaus, B., Roth, P., Konjhodzic, D., and Meier, C.: Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechnol. 4, 1039 (2004).CrossRefGoogle Scholar
12.Munir, Z., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).CrossRefGoogle Scholar
13.Schierning, G., Theissmann, R., Wiggers, H., Sudfeld, D., Ebbers, A., Franke, D., Witusiewicz, V.T., and Apel, M.: Microcrystalline silicon formation by silicon nanoparticles. J. Appl. Phys. 103, 084305 (2008).CrossRefGoogle Scholar
14.Dismukes, J.P., Ekstrom, L., and Paff, R.J.: Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68, 3021 (1964).CrossRefGoogle Scholar
15.Rodriguez-Carvajal, J.: FULLPROF: A program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, p. 127.Google Scholar
16.Cape, J.A. and Lehman, G.W.: Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J. Appl. Phys. 34, 1909 (1963).CrossRefGoogle Scholar
17.Schwesig, D., Schierning, G., Theissmann, R., Stein, N., Petermann, N., Wiggers, H., Schmechel, R., and Wolf, D.E.: From nanoparticles to nanocrystalline bulk: Field assisted sintering of silicon nanoparticles. Nanotechnology 22, 135601 (2011).CrossRefGoogle ScholarPubMed
18.Rieger, M.M. and Vogl, P.: Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. Phys. Rev. B 48, 14276 (1993).CrossRefGoogle ScholarPubMed
19.Schäffler, F.: SiGe, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S. (John Wiley & Sons, New York, 2001), pp. 149188.Google Scholar
20.Stegner, A.R., Pereira, R.N., Lechner, R., Klein, K., Wiggers, H., Stutzmann, M., and Brandt, M.S.: Doping efficiency in freestanding silicon nanocrystals from the gas phase: Phosphorus incorporation and defect-induced compensation. Phys. Rev. B 80, 165326 (2009).CrossRefGoogle Scholar
21.Lee, H., Wang, D., Wang, W., Ren, Z., Klotz, B., Tang, M.Y., Yang, R., Gogna, P., Fleurial, J-P., Dresselhaus, M.S., and Chen, G.: Thermoelectric properties of Si/Ge nano-composite. International Conference on Thermoelectrics, ICT Proceedings, June 19–23, 2005, pp. 269271.Google Scholar
22.Meddins, H.R. and Parrot, J.E.: The thermal and thermoelectric properties of sintered germanium-silicon alloys. J. Phys. C: Solid State Phys. 9, 1263 (1976).CrossRefGoogle Scholar
23.Rowe, D.M., Shukla, V.S., and Savvides, N.: Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature 290, 765 (1981).CrossRefGoogle Scholar
24.Rowe, D.M. and Shukla, V.S.: The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J. Appl. Phys. 52, 7421 (1981).CrossRefGoogle Scholar
25.Takashiri, M., Borca-Tasciuc, T., Jacquot, A., Miyazaki, K., and Chen, G.: Structure and thermoelectric properties of boron doped nanocrystalline Si0.8Ge0.2 thin film. J. Appl. Phys. 100, 054315 (2006).CrossRefGoogle Scholar