Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T16:46:00.995Z Has data issue: false hasContentIssue false

Benchmarking spintronic logic devices based on magnetoelectric oxides

Published online by Cambridge University Press:  26 September 2014

Dmitri E. Nikonov*
Affiliation:
Components Research, Intel Corp., MS RA3-252, Hillsboro, OR 97124, USA
Ian A. Young
Affiliation:
Components Research, Intel Corp., MS RA3-252, Hillsboro, OR 97124, USA
*
a) Address all correspondence to this author. e-mail: dmitri.e.nikonov@intel.com
Get access

Abstract

Active research is ongoing in logic devices beyond complementary metal–oxide–semiconductor electronics. One of the most promising classes of such devices is spintronic/nanomagnetic devices. Switching of magnetization by spin torque (ST) demonstrated in spintronic devices results in relatively high switching energy. An attractive option for lowering switching energy is magnetoelectric (ME) switching achieved by placing other materials (mostly oxides) adjacent to ferromagnets. We review recent experiments on ME switching, classify them according to the ME phenomena into surface anisotropy, exchange bias, and magnetostrictive, and compare switching parameters for these classes. Then, we perform micromagnetic simulations of switching by the effective ME field of both stand-alone nanomagnets and spintronic interconnects. We determine the threshold values of ME field for switching and the resulting switching time. These switching requirements are incorporated into the previously developed benchmarking framework for spintronic logic devices and circuits. We conclude that ME switching results in 1 to 2 orders of magnitude improvement of switching energy and several time improvement of switching delay compared with ST switching across various schemes of spin logic devices.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114 (1965).Google Scholar
International Technology Roadmap for Semiconductors, 2011. [Online]. Available: http://www.itrs.net/.Google Scholar
Bernstein, K., Cavin, R.K. III, Porod, W., Seabaugh, A., and Welser, J.: Device and architecture outlook for beyond-CMOS switches. Proc. IEEE 98(12), 21692184 (2010).Google Scholar
Zutic, I., Fabian, J., and Das Sarma, S.: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323410 (2004).Google Scholar
Nikonov, D.E. and Bourianoff, G.I.: Operation and modeling of semiconductor spintronics computing devices. J. Supercond. Novel Magn. 21(8), 479493 (2008).Google Scholar
Nikonov, D. and Young, I.: Uniform methodology for benchmarking beyond-CMOS logic devices. In Proceedings of IEDM (IEEE, Piscataway, NJ, 2012); p. 25.4.Google Scholar
Nikonov, D.E. and Young, I.A.: Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 24982533 (2013).Google Scholar
Locatelli, N., Cros, V., and Grollier, J.: Spin-torque building blocks. Nat. Mater. 13, 11 (2014).Google Scholar
Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123R152 (2005).Google Scholar
Cheong, S-W. and Mostovoy, M.: Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).CrossRefGoogle ScholarPubMed
Zhai, J., Xing, Z., Dong, S., Li, J., and Viehland, D.: Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 91(2), 351358 (2008).CrossRefGoogle Scholar
Nan, C-W., Bichurin, M.I., Dong, S., and Viehland, D.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).Google Scholar
Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthelemy, A., and Fert, A.: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007).Google Scholar
Overby, M., Chernyshov, A., Rokhinson, L.P., Liu, X., and Furdyna, J.K.: GaMnAs-based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008).Google Scholar
Tiercelin, N., Dusch, Y., Klimov, A., Giordano, S., Preobrazhensky, V., and Pernod, P.: Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers. Appl. Phys. Lett. 99, 192507 (2011).CrossRefGoogle Scholar
Wang, W-G., Li, M., Hageman, S., and Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64 (2012).CrossRefGoogle Scholar
Chiu, Y.-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.-J., He, Q., Balke, N., Yang, C.-H., Lee, D., Hu, W., Zhan, Q., Yang, P.-L., Fraile-Rodríguez, A., Scholl, A., Wang, S.X., and Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).Google Scholar
Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., and Suzuki, Y.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158 (2009).Google Scholar
He, X., Wang, Y., Wu, N., Caruso, A.N., Vescovo, E., Belashchenko, K.D., Dowben, P.A., and Binek, C.: Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579 (2010).Google Scholar
Chen, Y., Fitchorov, T., Vittoria, C., and Harris, V.G.: Electrically controlled magnetization switching in a multiferroic heterostructure. Appl. Phys. Lett. 97, 052502 (2010).CrossRefGoogle Scholar
Brintlinger, T., Lim, S-H., Baloch, K.H., Alexander, P., Qi, Y., Barry, J., Melngailis, J., Salamanca-Riba, L., Takeuchi, I., and Cumings, J.: In situ observation of reversible nanomagnetic switching induced by electric fields. Nano Lett. 10, 1219 (2010).Google Scholar
Lahtinen, T.H.E., Tuomi, J.O., and van Dijken, S.: Electrical writing of magnetic domain patterns in ferromagnetic/ferroelectric heterostructures. IEEE Trans. Magn. 47, 3768 (2011).Google Scholar
Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y-H., Salahuddin, S., and Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).Google Scholar
Wu, T., Bur, A., Zhao, P., Mohanchandra, K.P., Wong, K., Wang, K.L., Lynch, C.S., and Carman, G.P.: Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1-x)–[PbTiO3]x heterostructure. Appl. Phys. Lett. 98, 012504 (2011).CrossRefGoogle Scholar
Shabadi, P., Khitun, A., Wong, K., Amiri, P.K., Wang, K.L., and Moritz, C.A.: Spin wave functions nanofabric update. In Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures, San Diego, CA, Vol. 107 (2011).Google Scholar
Fitchorov, T., Chen, Y., Hu, B., Gillette, S.M., Geiler, A., Vittoria, C., and Harris, V.G.: Tunable fringe magnetic fields induced by converse magnetoelectric coupling in a FeGa/PMN-PT multiferroic heterostructure. J. Appl. Phys. 110, 123916 (2011).Google Scholar
Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., and Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39 (2011).Google Scholar
Zhu, J., Katine, J.A., Rowlands, G.E., Chen, Y-J., Duan, Z., Alzate, J.G., Upadhyaya, P., Langer, J., Amiri, P.K., Wang, K.L., and Krivorotov, I.N.: Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).Google Scholar
Alzate, J.G., Amiri, P.K., Upadhyaya, P., Cherepov, S.S., Zhu, J., Lewis, M., Dorrance, R., Katine, J.A., Langer, J., Galatsis, K., Markovic, D., Krivorotov, I., and Wang, K.L.: Voltage-induced switching of nanoscale magnetic tunnel junctions. In Proceedings of IEDM, 2012; p. 29.5.Google Scholar
Khan, A., Nikonov, D.E., Manipatruni, S., Ghani, T., and Young, I.A.: Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory. Appl. Phys. Lett. 115, 262407 (2014).Google Scholar
Ralph, D.C. and Stiles, M.D.: Spin transfer torques. J. Magn. Magn. Mater. 320, 1190 (2008).Google Scholar
Berkov, D.V. and Miltat, J.: Spin-torque driven magnetization dynamics: Micromagnetic modeling. J. Magn. Magn. Mater. 320, 1238 (2008).Google Scholar
Donahue, M.J. and Porter, D.G.: OOMMF User’s Guide, Version 1.0, National Institute of Standards and Technology; Report No. NISTIR 6376 September, 1999.Google Scholar
Nikonov, D.E., Bourianoff, G.I., Rowlands, G., and Krivorotov, I.N.: Strategies and tolerances of spin transfer torque switching. J. Appl. Phys. 107, 113910 (2010).Google Scholar
Mangin, S., Ravelosona, D., Katine, J.A., Carey, M.J., Terris, B.D., and Fullerton, E.E.: Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006).CrossRefGoogle Scholar
Nikonov, D.E., Manipatruni, S., and Young, I.A.: Automotion of domain walls for spintronic interconnects. J. Appl. Phys. 115, 213902 (2014).Google Scholar
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 17191722 (2003).Google Scholar
Beleggia, M., De Graef, M., Millev, Y.T., Goode, D.A., and Rowlands, G.: Demagnetization factors for elliptic cylinders. J. Phys. D: Appl. Phys. 38, 3333 2005.Google Scholar
International Technology Roadmap for Semiconductors, Chapter PIDS, 2011. [Online]. Available: http://www.itrs.net/.Google Scholar
Avci, U.E., Rios, R., Kuhn, K., and Young, I.A.: Comparison of performance, switching energy and process variations for the TFET and MOSFET in logic. In Proc. Very Large Scale Integr. (VLSI) Technol. Symp., 2011; pp. 124125.Google Scholar