Hostname: page-component-788cddb947-wgjn4 Total loading time: 0 Render date: 2024-10-19T19:24:02.871Z Has data issue: false hasContentIssue false

Calorimetric analysis of the system Ag2S–Ag2Se between 25 and 250 °C

Published online by Cambridge University Press:  03 March 2011

N.E. Pingitore
Affiliation:
Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0555
B.F. Ponce
Affiliation:
Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0555
L. Estrada
Affiliation:
Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0555
M.P. Eastman
Affiliation:
Department of Chemistry, Northern Arizona University, Flagstaff, Arizona 86011
H.L. Yuan
Affiliation:
Department of Chemistry, Florida Atlantic University, Boca Raton, Florida 33431-0991
L.C. Porter
Affiliation:
Department of Chemistry, The University of Texas at El Paso, El Paso, Texas 79968-0555
G. Estrada
Affiliation:
Department of Chemistry, The University of Texas at El Paso, El Paso, Texas 79968-0555
Get access

Abstract

Differential scanning calorimetry (DSC) demonstrates that compounds in the pseudobinary system Ag2S–Ag2Se undergo rapid, reversible solid-state phase changes at temperatures between approximately 70 and 178 °C. These temperatures vary systematically with composition, with highs at the pure end members, Ag2S (178 °C) and Ag2Se (134 °C), and a low in the compositional range of approximately Ag2S0.4Se0.6 to Ag2S0.3Se0.7 (70 °C). These data are consistent with the presence of two solid solutions in this system at ambient conditions: the Ag2S–III-type, monoclinic, ranging to approximately Ag2S0.4Se0.6 and the Ag2Se-II-type, orthorhombic, extending from Ag2Se to Ag2S0.3Se0.7. Entropies of transition of 6 to 9 e.u. characterize compositions within the Ag2S-III-type solid solution, whereas values of 13 to 16 e.u. mark members of the Ag2Se-II-type solid solution. The high-temperature allotrope is presumably a continuous solid solution between Ag2S-II and Ag2Se-I, which have similar body-centered cubic structures.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yokata, I., J. Phys. Soc. Jpn. 16, 2213 (1961).Google Scholar
2Yokata, I., J. Phys. Soc. Jpn. 21, 420 (1966).Google Scholar
3Junod, P., Helv. Phys. Acta 32, 567 (1959).Google Scholar
4Junod, P., Helv. Phys. Acta 32, 601 (1959).Google Scholar
5Conn, J. B. and Taylor, R. C., J. Electrochem. Soc. 107, 977 (1960).CrossRefGoogle Scholar
6Miyatani, S., J. Phys. Soc. Jpn. 15, 1586 (1960).CrossRefGoogle Scholar
7Cope, R. G. and Goldsmid, H. J., Brit. J. Appl. Phys. 16, 1501 (1965).CrossRefGoogle Scholar
8Contreras, L. and Rickert, H., in Fast Ion Transport in Solids, edited by van Gool, W. (North-Holland, Amsterdam, 1973), p. 523.Google Scholar
9Chu, W. F., Rickert, H., and Weppner, W., in Fast Ion Transport in Solids, edited by van Gool, W. (North-Holland, Amsterdam, 1973), p. 181.Google Scholar
10Gorbachev, V. V. and Putilin, I. M., Izv. Akad. Nauk SSSR, Neorg. Mater. 11, 1556 (1975).Google Scholar
11Ohachi, T. and Taniguchi, I., Electrochim. Acta 22, 747 (1977).Google Scholar
12Mostafa, S. N., Zeit. Metallkd. 74, 188 (1983).Google Scholar
13Honma, K. and Iida, K., J. Phys. Soc. Jpn. 54, 2218 (1985).Google Scholar
14Yakshibaev, R. A., Chebotin, V. N., and Knyazeva, S. V., Izv. Akad. Nauk SSSR, Neorg. Mater. 21, 921 (1985).Google Scholar
15Aliev, S. A. and Aliev, F. F., Izv. Akad. Nauk SSSR, Neorg. Mater. 21, 1869 (1985).Google Scholar
16Okazaki, H. and Tachibana, F., Solid State Ionics 40–41, 171 (1990).CrossRefGoogle Scholar
17Miida, R. and Tanaka, M., Solid State Ionics 40–41, 362 (1990).Google Scholar
18Kobayashi, M., Tomari, T., Tachibana, F., and Okazaki, H., Solid State Ionics 40–41, 300 (1990).CrossRefGoogle Scholar
19Vlasov, Y. G., Bychkov, E. A., and Seleznev, B. L., Sens. Actuators, B Chem. B 2, 23 (1990).CrossRefGoogle Scholar
20Pingitore, N. E., Ponce, B. F., Eastman, M. P., Moreno, F., and Podpora, C., J. Mater. Res. 7, 2219 (1992).Google Scholar
21Petruk, W., Owens, D. R., Stewart, J. M., and Murray, E. J., Can. Mineral. 12, 365 (1974).Google Scholar
22Bontschewa-Mladenowa, Z. and Zaneva, K., Z. Anorg. Allg. Chem. 437, 253 (1977).Google Scholar
23Bontschewa-Mladenowa, Z. and Vassilev, V., J. Therm. Anal. 29, 523 (1984).Google Scholar
24Petzow, G. and Effenberg, G., Ternary Alloys (VCH, New York, 1988), p. 521.Google Scholar
25Rahlfs, P., Zeit. Physikal. Chem. B–312, 157 (1936).CrossRefGoogle Scholar
26Kracek, F. E., Trans. Am. Geophys. U. 27, 364 (1946).Google Scholar
27Roy, R., Majumadar, A. J., and Hulbe, C. W., Econ. Geol. 54, 1278 (1959).Google Scholar
28Banus, M. D., Science 147, 732 (1965).Google Scholar
29Sadanaga, R. and Sueno, S., Mineral. J. (Japan) 5, 124 (1967).Google Scholar
30Smit, T. J. M., Venema, E., Wiersma, J., and Wiegers, G. A., J. Solid State Chem. 2, 309 (1970).CrossRefGoogle Scholar
31Wunderlich, B., Thermal Analysis (Academic Press, New York, 1990), 450 pp.Google Scholar
32Shannon, R. D., Acta Crystallogr. A–32, 751 (1976).Google Scholar
33Main, J. V., Rodgers, K. A., Kobe, H. W., and Woods, C. P., Mineral. Mag. 38, 961 (1972).CrossRefGoogle Scholar
34Gronvold, F. and Westrum, E. F. Jr., J. Chem. Thermodynamics 18, 381 (1986).CrossRefGoogle Scholar
35Lowenhaupt, D. E. and Smith, D. K., Summer Mtg. Am. Crystallogr. Assoc. (1972), p. 265.Google Scholar