Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-15T18:21:23.489Z Has data issue: false hasContentIssue false

Cosolvent-assisted spray pyrolysis for the generation of metal particles

Published online by Cambridge University Press:  29 June 2016

Jung Hyeun Kim
Affiliation:
Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742
Valeri I. Babushok
Affiliation:
Fire Research Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Thomas A. Germer
Affiliation:
Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
George W. Mulholland
Affiliation:
Fire Research Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Sheryl H. Ehrman
Affiliation:
Department ofChemical Engineering, University of Maryland, College Park, Maryland 20742
Get access

Abstract

A cosolvent-assisted spray pyrolysis process was developed for the formation of phase-pure metal particles from metal salt precursors without the direct addition of hydrogen or other reducing gas. Generation of phase-pure copper and nickel particles from aqueous solutions of copper acetate, copper nitrate, and nickel nitrate over the temperature range of 450 to 1000 °C was demonstrated. Addition of ethanol as a cosolvent plays a crucial role in producing phase-pure metal powders. Results of a modeling study of ethanol decomposition kinetics suggest that cosolvent decomposition creates a strong reducing atmosphere during spray pyrolysis via in situ production of hydrogen and carbon monoxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, W., Li, L., Qi, J., Wang, Y., and Gui, Z., J. Am. Ceram. Soc. 81, 2751 (1998).Google Scholar
2.Brusic, V., Frankel, G.S., Roldan, J., and Saraf, R., J. Electrochem. Soc. 142, 2591 (1995).Google Scholar
3.Li, Y., Liu, J., Wang, Y., and Wang, Z.L., Chem. Mater. 13, 1008 (2001).Google Scholar
4.Gardner, T.J. and Messing, G.L., Thermochim. Acta 78, 17 (1984).Google Scholar
5.Kodas, T.T. and Hampden-Smith, M.J., The Chemistry of Metal CVD (VCH, New York, 1994), Chaps. 4-5.Google Scholar
6.Majumdar, D., Shefelbine, T., Kodas, T, and Glicksman, H., J. Mater. Res. 11, 2861 (1996).Google Scholar
7.Nagashima, K., Wada, M., and Kato, A., J. Mater. Res. 5, 2828 (1990).Google Scholar
8.Xia, B., Lenggoro, I.W., and Okuyama, K., J. Mater. Res. 15, 2157 (2000).Google Scholar
9.Kim, J.H., Germer, T.A., Mulholland, G.W., and Ehrman, S.H., Adv. Mater. 14, 518 (2002).Google Scholar
10.Liu, B.Y.H., Fine Particles: Aerosol Generation, Measurement, Sampling, and Analysis (Academic Press, New York, 1976), Chap. 4, p. 74.Google Scholar
11.Marinov, N.M., Int. J. Chem. Kinet. 31, 183 (1999).Google Scholar
12.Tsang, W., Proceedings of the Second Joint Meeting ofthe US Sections of the Combustion Institute, Oakland, CA, March 2001 (Combustion Institute, Pittsburgh, PA), Paper 92.Google Scholar
13.Bamford, C.H. and Tipper, C.F.H., Gas Phase Combustion: Comprehensive Chemical Kinetics (Elsevier Scientific, New York, 1977), Vol. 17.Google Scholar
14.Kee, R.J., Rupley, F.M., and Miller, J.A., CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis ofGas Phase Chemical Kinetics (Sandia National Laboratory, Albuquerque, NM, 1989), SAND 89-8009B.Google Scholar
15.Gurvich, L.V., Iorish, V.S., Chekhovskoi, D.V., Ivanisov, A.D., Proskurnev, A. Yu., Yungman, V.S., Veits, V.A., and Bergman, G.A., IVTANTHERMO-Database of Thermodynamic Properties of Individual Substances (Institute of High Temperatures, Moscow, Russia, 1993).Google Scholar
16.Lide, D.R., CRC Handbook of Chemistry and Physics, 74th ed. (CRC Press, Boca Raton, FL, 1992).Google Scholar
17.Wilson, M.K., in Determination ofOrganic Structures by Physical Methods, edited by Nachod, F.C. and Phillips, W.D. (Academic Press, New York, 1962), Vol. 2, Chap. 3, p. 181.Google Scholar
18.Ferraro, J.R. and Basile, L.J., Fourier Transform Infrared Spec-troscopy: Applications to Chemical Systems (Academic Press, New York, 1978), Vol. 1, Chap. 3, p. 127.Google Scholar
19.Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M., and Okuyama, K., J. Mater. Res. 15, 733 (2000).Google Scholar
20.Kinney, P.D., Pui, D.Y.H., Mulholland, G.W., and Bryner, N.P., J. Res. Natl. Inst. Stand. Technol. 96, 147 (1991).Google Scholar
21.Ayyappan, S., Gopalan, R.S., Subbanna, G.N., and Rao, C.N.R., J. Mater. Res. 12, 398 (1997).Google Scholar
22.Bonet, F., Delmas, V., Grugeon, S., Urbina, R.H., Silvert, P-Y., and Tekaia-Elhsissen, K., Nanostruct. Mater. 11, 1277 (1999).Google Scholar
23.Xia, B., Lenggoro, I.W., and Okuyama, K., J. Am. Ceram. Soc. 84, 1425 (2001).Google Scholar
24.Tromans, D., Ind. Eng. Chem. Res. 39, 805 (2000).CrossRefGoogle Scholar
25.Kutsche, I., Gildehaus, G., Schuller, D., and Schumpe, A., J. Chem. Eng. Data 29, 286 (1984).Google Scholar
26.Nagashima, K., Iwaida, T., Sasaki, H., Katatae, Y., and Kato, A., Nippon Kagaku Zasshi 1, 17 (1990).Google Scholar
27.Maslowska, J. and Baranowska, A., J. Thermal Anal. 29, 309 (1984).CrossRefGoogle Scholar
28.Afzal, M., Butt, P.K., and Ahmad, H., J. Thermal Anal. 37, 1015 (1991).CrossRefGoogle Scholar
29.Mansour, S.A.A., J. Thermal Anal. 46, 263 (1996).Google Scholar
30.Obaid, A.Y., Alyoubi, A.O., Samarkandy, A.A., Al-Thabaiti, S.A., Al-Juaid, S.S., El-Bellihi, A.A., and Deifallah, El-H.M., J. Therm. Anal. Calorim. 61, 985 (2000).Google Scholar
31.Mu, J. and Perlmutter, D.D., Thermochim. Acta 56, 253 (1982).CrossRefGoogle Scholar
32.Mansour, S.A.A., J. Thermal Anal. 45, 1381 (1995).Google Scholar
33.King, E.G., Mah, A.D., and Pankratz, L.B., INCRA Series on the Metallurgy of Copper (NSRDS-NBS, U.S. Government Printing Office, Washington, DC, 1973).Google Scholar