Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-09T02:29:08.397Z Has data issue: false hasContentIssue false

Creation and investigation of chitin/HA double-layer coatings on AZ91 magnesium alloy by dipping method

Published online by Cambridge University Press:  13 June 2017

Saeid Fooladi
Affiliation:
Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan 3671639998, Iran
Seyed Rahim Kiahosseini*
Affiliation:
Department of Engineering, Damghan Branch, Islamic Azad University, Damghan 3671639998, Iran
*
a)Address all correspondence to this author. e-mail: rkiahoseyni@yahoo.com
Get access

Abstract

In this study, chitin was deposited on AZ91 magnesium alloy at room temperature for 180 min, and then HA coating was applied as second layer for 180, 240, 300, 360, and 420 min by dipping method. The layers were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission-scanning electron microscopy (FE-SEM), as well as adhesion, nanohardness, and potentiodynamic polarization tests. XRD results analyzed by Williamson–Hall method revealed residual tensile and compressive strains in the chitin and HA coatings, respectively and with prolonged deposition time to 420 min, coating adhesion decreased. FTIR results indicated the presence of the chemical factors affecting the chitin and HA coatings. FE-SEM results indicated that prolonged deposition time resulted in increased coating density and formation of a porous structure of HA coating. Overall, the optimum corrosion resistance was observed for the sample with 300 min deposition time.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Lakshmi Nair

References

REFERENCES

Roth, I., Schumacher, S., Basler, T., Baumert, K., Seitz, J-M., Evertz, F., Müller, P.P., Bäumer, W., and Kietzmann, M.: Magnesium corrosion particles do not interfere with the immune function of primary human and murine macrophages. Prog. Biomater. 4, 21 (2015).CrossRefGoogle Scholar
Razavi, M., Fathi, M.H., and Meratian, M.: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng., A 527, 6938 (2010).CrossRefGoogle Scholar
Hu, J., Shaokang, G., Zhang, C., Ren, C., Wen, C., Zeng, Z., and Peng, L.: Corrosion protection of AZ31 magnesium alloy by a TiO2 coating prepared by LPD method. Surf. Coat. Technol. 203, 2017 (2009).CrossRefGoogle Scholar
Surmenev, M.A. and Surmenev, R.A.: Microstructure characterization and corrosion behaviour of a nanohydroxyapatite coating deposited on AZ31 magnesium alloy using radio frequency magnetron sputtering. Vacuum 117, 60 (2015).CrossRefGoogle Scholar
Cao, G., Wang, L., Fu, Z., Hu, J., Guan, S., Zhang, C., Wang, L., and Zhu, S.: Chemically anchoring of TiO2 coating on OH-terminated Mg3(PO3)2 surface and its influence on the in vitro degradation resistance of Mg–Zn–Ca alloy. Appl. Surf. Sci. 308, 38 (2014).CrossRefGoogle Scholar
Fekry, A.M., Ghoneim, A.A., and Ameer, M.A.: Electrochemical impedance spectroscopy of chitosan coated magnesium alloys in a synthetic sweat medium. Surf. Coat. Technol. 238, 126 (2014).CrossRefGoogle Scholar
Kiahosseini, S.R., Afshar, A., Larijani, M.M., and Yousefpour, M.: Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl. Surf. Sci. 401, 172 (2017).CrossRefGoogle Scholar
Ma, S., Wang, D., Zhong, H., Gong, Y., Li, Y., and Jiang, Q.: In situ transformation of casein/CaCO3 microspheres into hierarchical hydroxyapatite composite microparticles and its cytocompatibility evaluation. J. Mater. Sci. 51, 6836 (2016).CrossRefGoogle Scholar
Miniach, E., Śliwak, A., Moyseowicz, A., and Gryglewicz, G.: Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst. J. Mater. Sci. 51, 5367 (2016).CrossRefGoogle Scholar
Wei fan, H.D., An, Y., Guo, C., Wei, Y., and Hou, L.: Fabrication and characterization of a hydroxyapatite–methylcellulose composite coating on the surface of AZ31 magnesium alloy. Mater. Lett. 152, 32 (2015).CrossRefGoogle Scholar
Dunne, C.F., Levy, G.K., Hakimi, O., Aghion, E., Twomey, B., and Santon, K.T.: Corrosion behaviour of biodegradable magnesium alloys with hydroxyapatite coatings. Surf. Coat. Technol. 289, 37 (2016).CrossRefGoogle Scholar
Bo Niu, P.S., Wei, D., Shanshan, E., Li, Q., and Chen, Y.: Effects of sintering temperature on the corrosion behavior of AZ31 alloy with Ca–P sol–gel coating. J. Alloys Compd. 665, 435 (2016).CrossRefGoogle Scholar
Kaygili, O., Keser, S., Kom, M., Bulut, N., and Dorozhkin, S.V.: The effect of simulating body fluid on the structural properties of hydroxyapatite synthesized in the presence of citric acid. Prog. Biomater. 5, 173 (2016).CrossRefGoogle ScholarPubMed
Dorozhkin, S.V.: Calcium orthophosphates (CaPO4): Occurrence and properties. Prog. Biomater. 5, 9 (2016).CrossRefGoogle ScholarPubMed
Kiahosseini, S.R., Afshar, A., Larijani, M.M., and Yousefpour, M.: Electrochemical evaluation of hydroxyapatite/ZrN coated magnesium biodegradable alloy in Ringer solution as a simulated body fluid. J. Chem. Health Risks 5, 45 (2015).Google Scholar
Sánchez-Arévalo, F.M., Muñoz-Ramírez, L.D., Álvarez-Camacho, M., Rivera-Torres, F., Maciel-Cerda, A., Montiel-Campos, R., and Vera-Graziano, R.: Macro- and micromechanical behaviors of poly(lactic acid)–hydroxyapatite electrospun composite scaffolds. J. Mater. Sci. 52, 3353 (2017).CrossRefGoogle Scholar
Kulpetchdara, K., Limpichaipanit, A., Rujijanagul, G., Randorn, C., and Chokethawai, K.: Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel. Surf. Coat. Technol. 306, 181 (2016).CrossRefGoogle Scholar
Erzsebet Sara Bogya, Z.K. and Barabas, R.: Atmospheric plasma sprayed silica–hydroxyapatite coatings on magnesium alloy substrates. Ceram. Int. 41, 6005 (2015).CrossRefGoogle Scholar
Huawei Yang, K.X., Wang, T., Niu, J., Song, Y., Xiong, Z., Zheng, K., Wei, S., and Lu, W.: Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. J. Alloys Compd. 672, 366 (2016).CrossRefGoogle Scholar
Ramin Rojaee, M.F. and Raeissi, K.: Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating. Mater. Sci. Eng., C 33, 3817 (2013).CrossRefGoogle Scholar
Oladzadabbasabadi, N., Ebadi, S., Nafchi, A.M., Karimd, A.A., and Kiahosseini, S.R.: Functional properties of dually modified sago starch/-carrageenan films: An alternative to gelatin in pharmaceutical capsules. Carbohydr. Polym. 160, 43 (2017).CrossRefGoogle Scholar
Niu, J., Lin, H-Z., Jiang, S-G., Chen, X., Wu, K-C., Liu, Y-J., Wang, S., and Tian, L-X.: Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372–375, 1 (2013).CrossRefGoogle Scholar
Chamorro-Posada, P., Silva-Castro, I., Vázquez-Cabo, J., Martín-Ramos, P., López-Santos, J., and Martín-Gil, J.: A study of the far infrared spectrum of N-acetyl-d-glucosamine using THz-TDS, FTIR, and semiempirical quantum chemistry methods. J. Spectrosc. 2016, 1 (2016).CrossRefGoogle Scholar
Zhang, Y., Bai, K., Fu, Z., Zhang, C., Zhou, H., Wang, L., Zhu, S., Guan, S., Li, D., and Hu, J.: Composite coating prepared by micro-arc oxidation followed by sol–gel process and in vitro degradation properties. Appl. Surf. Sci. 258, 2939 (2012).CrossRefGoogle Scholar
Tousi, S.S.R., Rad, R.Y., Salahi, E., Mobasherpour, I., and Razavi, M.: Production of Al–20 wt% Al2O3 composite powder using high energy milling. Powder Technol. 192, 346 (2009).CrossRefGoogle Scholar
Kim, J-J., Jeong, J-H., Lee, K-R., and Kwon, D.: A new indentation cracking method for evaluating interfacial adhesion energy of hard films. Thin Solid Films 441, 172 (2003).CrossRefGoogle Scholar
Shokrieh, M., Hosseinkhani, M., Naimi-Jamal, M., and Tourani, H.: Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym. Test. 32, 45 (2013).CrossRefGoogle Scholar
Zak, A.K., Majid, W.A., Abrishami, M.E., and Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251 (2011).Google Scholar
Kozuka, H., Kajimura, M., Hirano, T., and Katayama, K.: Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent. J. Sol-Gel Sci. Technol. 19, 205 (2000).CrossRefGoogle Scholar
Feng, X., Huang, Y., and Rosakis, A.: On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness. J. Appl. Mech. 74, 1276 (2007).CrossRefGoogle Scholar
Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., and Buyong, Z.: A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95 (2016).CrossRefGoogle ScholarPubMed
Hu, J., Zhang, C., Cui, B., Bai, K., Guan, S., Wang, L., and Zhu, S.: In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol–gel method. Appl. Surf. Sci. 257, 8772 (2011).CrossRefGoogle Scholar
Bockmeyer, M. and Löbmann, P.: Crack formation in TiO2 films prepared by sol–gel processing: Quantification and characterization. Thin Solid Films 515, 5212 (2007).CrossRefGoogle Scholar
Kiahosseini, S.R., Afshar, A., Larijani, M.M., and Yousefpour, M.: Adhesion, microstrain, and corrosion behavior of ZrN-coated AZ91 alloy as a function of temperature. J. Mater. Res. 28, 2709 (2013).CrossRefGoogle Scholar
Combes, C. and Rey, C.: Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 6, 3362 (2010).CrossRefGoogle ScholarPubMed
Ferro, D., Teghil, R., Barinov, S., D’Alessio, L., and DeMaria, G.: Thickness-dependent hardness of pulsed laser ablation deposited thin films of refractory carbides. Mater. Chem. Phys. 87, 233 (2004).CrossRefGoogle Scholar
Chinizadeh, M. and Kiahosseini, S.R.: Deformation, microstructure, hardness, and pitting corrosion of 316 stainless steel after laser forming: A comparison between natural and forced cooling. J. Mater. Res. (2017). DOI: 10.1557/jmr.2017.146.CrossRefGoogle Scholar
Gerberich, W.W. and Cordill, M.J.: Physics of adhesion. Rep. Prog. Phys. 69, 2157 (2006).CrossRefGoogle Scholar
Bai, K., Zhang, Y., Fu, Z., Zhang, C., Cui, X., Meng, E., Guan, S., and Hu, J.: Fabrication of chitosan/magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy. Mater. Lett. 73, 59 (2012).CrossRefGoogle Scholar