Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T18:36:16.872Z Has data issue: false hasContentIssue false

Depth-sensing indentation measurements with Vickers and Berkovich indenters

Published online by Cambridge University Press:  31 January 2011

B. Rother
Affiliation:
Forschungsinstitut für Edelmetalle und Metallchemie, Katharinenstr. 17, D-73525 Schwäbisch Gmünd, Germany
A. Steiner
Affiliation:
Joint Research Centre of the Commission of the EC, Inst. for Advanced Materials, I-21020 Ispra, Italy
D. A. Dietrich
Affiliation:
Ingenieubüro Dr. Dietrich, Hauptstr. 64, D-09235 Burkhardtsdorf, Germany
H. A. Jehn
Affiliation:
Forschungsinstitut für Edelmetalle und Metallchemie, Katharinenstr. 17, D-73525 Schwäbisch Gmünd, Germany
J. Haupt
Affiliation:
Joint Research Centre of the Commission of the EC, Inst. for Advanced Materials, I-21020 Ispra, Italy
W. Gissler
Affiliation:
Joint Research Centre of the Commission of the EC, Inst. for Advanced Materials, I-21020 Ispra, Italy
Get access

Abstract

Depth-sensing indentation measurements are performed with two different Vickers indenters and one Berkovich indenter. The sample materials were mirror polished Ag, Al, Au, Ni, and Ti samples. From the load-indentation depth data, the conventional hardness plots as well as the first derivative are calculated. The latter procedure yields a specific volume related density of deformation energy in the probed material. That specific energy density is shown to be a constant material parameter for extended indentation depths and for different Vickers indenters. Vickers and Berkovch indenters delivered within the error margin the same results.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
2.Grau, P. and Berg, G., Materialprüfung 6, 227230 (1994).Google Scholar
3.Li, H., Ghosh, A., Han, Y. H., and Bradt, R., J. Mater. Res. 8, 10281032 (1993).CrossRefGoogle Scholar
4.Scheer, C. and Olaf, J. M., “Experimental micro-indent investigations for the analysis of mechanical coating system properties,” IWM-Bericht 6/93, Fraunhofer-Institut für Werkzeugmechanik, Freiburg 1993, in German.Google Scholar
5.Blau, P. J., Metallography 16, 118 (1983).CrossRefGoogle Scholar
6.Marshall, D. B., J. Am. Ceram. Soc. 66, 127131 (1983).CrossRefGoogle Scholar
7.Chen, Y-M., Ruff, A. W., and Dally, J. W., J. Mater. Res. 9, 13141321 (1994).CrossRefGoogle Scholar
8.Rother, B. and Dietrich, D. A., Phys. Status Solidi (a) 142, 389407 (1994).CrossRefGoogle Scholar
9.Rother, B., Materialwiss. Werkstofftechnik 26, 477482 (1995).CrossRefGoogle Scholar
10.Rother, B., Materialwiss. Werkstofftechnik 27, 487490 (1996).CrossRefGoogle Scholar
11.Rother, B., J. Mater. Sci. 30, 53945398 (1995).CrossRefGoogle Scholar
12.Ullner, Ch., Personal communication, BAM Federal Institution for Materials Testing, Berlin (1997).Google Scholar
13.Gissler, W., unpublished results, Joint Research Centre of the Commission of the EC, Ispra (1997).Google Scholar