Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T17:12:26.790Z Has data issue: false hasContentIssue false

Design and installation of a CO2-pulsed laser plasma deposition system for the growth of mass product nanostructures

Published online by Cambridge University Press:  23 April 2013

Muhammad Sajjad
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377
Xiaoyan Peng
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377
Jin Chu
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377
Hongxin Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Peter Feng*
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377
*
a)Address all correspondence to this author. e-mail: p.feng@upr.edu
Get access

Abstract

A CO2-pulsed laser plasma deposition (CO2-PLD) system is installed and used for the quick synthesis of various hexagonal boron nitride (h-BN) and zinc oxide (ZnO) nanostructures. Each part of the CO2-PLD system, such as focusing of laser beam on the target surface, sample holder, shutter, heater, type of the gas, and gas flow rate, can be easily controlled independently to fit different experimental conditions. After installation of the system, a series of experiments were conducted using hBN and ZnO targets. Scanning electron microscopy images showed that the entire surface (2 × 2 cm2) of the substrate is covered with the conical- and disk-shaped BN nanostructures and web-like highly dense ZnO nanowires, indicating a significantly short-time approach to grow mass product nanostructures. Raman spectroscopy identified the hexagonal structure of the synthesized samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cho, Y.J., Kim, C.H., Kim, H.S., Park, J., Choi, H.C., Shin, H.J., Gao, G., and Kang, H.S.: Electronic structure of Si-doped BN nanotubes using x-ray photoelectron spectroscopy and first-principles calculation. Chem. Mater. 21, 136 (2009).CrossRefGoogle Scholar
Bernard, S., Salles, V., Foucaud, S., and Miele, P.: Boron nitride nanoparticles: One-step synthesis from single-source preceramic precursors. Adv. Sci. Technol. 62, 1 (2010).CrossRefGoogle Scholar
Zhi, C., Bando, Y., Tang, C., Kuwahara, H., and Golberg, D.: Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889 (2009).CrossRefGoogle Scholar
Lin, Y., Williams, T.V., and Connell, J.W.: Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1, 277 (2010).CrossRefGoogle Scholar
Lin, Y., Williams, T.V., Cao, W., Ali, H.E.E., and Connell, J.W.: Defect functionalization of hexagonal boron nitride nanosheets. J. Phys. Chem. C 114, 17434 (2010).CrossRefGoogle Scholar
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J., and Kaiser, U.: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683 (2009).CrossRefGoogle ScholarPubMed
Cote, M., Haynes, P.D., and Molteni, C.: Material design from first principles: The case of boron nitride polymers. J. Phys. Condens. Matter 14(42), 9997 (2002).Google Scholar
Kyoungwon, K., Yong-Won, S., Seongpil, C., In-Ho, K., Sangsig, K., and Sang, Y.L.: Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO. Thin Solid Films 518, 1190 (2009).Google Scholar
Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., and Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209 (2010).CrossRefGoogle ScholarPubMed
Li, P.J., Liao, Z.M., Zhang, X.Z., Zhang, X.J., Zhu, H.C., Gao, J.Y., Laurent, K., Leprince-Wang, Y., Wang, N., and Yu, D.P.: Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires. Nano Lett. 9, 2513 (2009).CrossRefGoogle ScholarPubMed
Wu, Y.H., Qiao, P.W., Chong, T.C., and Shen, Z.X.: Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 6467 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
Zhu, M.Y., Wang, J.J., Holloway, B.C., Outlaw, R.A., Zhao, X., Hou, K., Shutthanandan, V., and Manos, D M.: A mechanism of carbon nanosheet formation. Carbon 45, 22292234 (2007).CrossRefGoogle Scholar
Feng, P.X. and Zhang, H.X.: Properties of nanostructured cubic boron nitride films prepared by the short-pulse laser plasma deposition techniques. Int. J. Refract. Met. Hard Mater 27, 823 (2009).CrossRefGoogle Scholar
Noorhana, Y., Beh, H.G., and Mansor, H.: Development of pulsed laser deposition system for the formation of web-like carbon nanotubes. Am. J. Appl. Sci. 2(11), 1546 (2005).Google Scholar
Ljubica, M.N., Ljijana, R., and Vladimir, V.S.: Effect of substrate type on nanostructured titania sol–gel coatings for sensors applications. Ceram. Int. 31, 261 (2005).Google Scholar
Pakdel, A., Zhi, C., Bando, Y., Nakayama, T., and Golberg, D.: Boron nitride nanosheet coatings with controllable water repellency. ACS Nano. 5, 65076515 (2011).CrossRefGoogle ScholarPubMed
Nemanich, R.J., Solin, S.A., and Martin, R.M.: Light scattering study of boron nitride microcrystals. Phys. Rev. B 23, 6348 (1981).CrossRefGoogle Scholar
Hoffman, D.M., Doll, G.L., and Eklund, P.C.: Electronic transition in hexagonal boron nitride. Phys. Rev. B 30, 6051 (1984).CrossRefGoogle Scholar
Wu, J., Han, W.Q., Walukiewicz, W., Ager, J.W., Shan, W., Haller, E.E., and Zettl, A.: Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett. 4, 647 (2004).CrossRefGoogle Scholar
Takahashi, M, Noguchi, Y., and Miyayama, M.: Electrical conduction mechanism in Bi4Ti3O12 single crystal. Jpn. J. Appl. Phys. 41, 70537056 (2002).CrossRefGoogle Scholar
Escobr-Alarcon, L., Camps, E., Rebollo, B., Haro-Poniatowski, E., Camacho-lopez, M.A., and Muhl, S.: Thin film deposition of nitrided amorphous carbon by laser ablation. Superficies y Vacio 11, 36 (2000).Google Scholar
Sajjad, M., Zhang, H.X., Peng, X.Y., and Feng, P.X.: Effect of substrate temperature in the synthesis of BN nanostructures. Phys. Scr. 83, 065601065604 (2011).CrossRefGoogle Scholar
Sajjad, M. and Feng, X.P.: Low temperature synthesis of cBN films. Appl. Phys. Lett. 99, 253109–1–253109–4 (2011).CrossRefGoogle Scholar
Yang, B.Q., Feng, P.X., Kumar, A., Katiyar, R.S., and Achermann, M.: Structural and optical properties of N-doped ZnO nanorod arrays. J. Phys. D: Appl. Phys. 42, 195402 (2009).CrossRefGoogle Scholar
Yang, B.Q., Kumar, A., Feng, P.X., and Katiyar, R.S.: Structural degradation and optical property of nanocrystalline ZnO films grown on Si (100). Appl. Phys. Lett. 92, 233112 (2008).CrossRefGoogle Scholar
Koki, S., Yasushi, H., Kouhei, N., Koichi, I., Kiyoshi, T., Makoto, K., and Bao-Ping, Z.: MOCVD growth of monomethylhydrazine-doped ZnO layers. J. Cryst. Growth 272, 805 (2004).Google Scholar
Pan, F., Song, C., Liu, X.J., Yang, Y.C., and Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng., R 62, 1 (2008).CrossRefGoogle Scholar