Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T02:14:22.488Z Has data issue: false hasContentIssue false

Effect of additional elements on the mechanical and microstructural properties of copper polycrystal under dynamic compression

Published online by Cambridge University Press:  31 January 2011

P. Ancrenaz
Affiliation:
DGA/CREA, 16 Bis Avenue Prieur de la Côte d'Or, 94114 Arcueil, France
C. Nguy
Affiliation:
DGA/CREA, 16 Bis Avenue Prieur de la Côte d'Or, 94114 Arcueil, France
C. Servant
Affiliation:
ISMA, Laboratoire de Métallurgie Structurale, URA CNRS 1107, Université de Paris-Sud, 91405 Orsay Cedex, France
Get access

Abstract

The effect of additional elements (Si and Co) on the behavior of copper polycrystalline alloy under static and dynamic compression was studied. Relations between the deformation microstructure and the mechanical behavior have been investigated. In the Cu–Si alloys, the SFE depends on additional element content and the SFE level controls the dissociation of perfect dislocations into partial ones. In the Cu–Co alloy, Co induces precipitation and the dislocation repartition is uniform if the precipitates are coherent. When the precipitates become semicoherent, there is formation of dislocation walls around the precipitates.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Campbell, J. D., Mater. Sci. Eng. 12, 3 (1973).CrossRefGoogle Scholar
2.Kumar, A. and Kumble, R., J. Appl. Phys. 40 (9), 40, 3475 (1969).Google Scholar
3.Stelly, M. and Dormeval, R., Symposium on high velocity deformation of solids, IUTAM, edited by Kawata, K. and Shiori, J. (Springer-Verlag, Berlin, 1977), p. 82.Google Scholar
4.Regazzoni, G., Thèse de Doctorat-ès-Sciences, Université de Grenoble, France (1983).Google Scholar
5.Giannotta, J. C., Thèse de Doctorat en Science et Génie des Matériaux, Ecole Nationale Supérieure des Mines de Paris (1986).Google Scholar
6.Dujardin, S., Gazeaud, G., and Lichtenberger, A., J. de Phys., Colloque C3, suppl. au n° 9, 49, 55 (1988).Google Scholar
7.Follansbee, P. S. and Kocks, U. F., Acta Metall. 36 (1), 81 (1988).CrossRefGoogle Scholar
8.Cheval, F. and Priester, L., Scripta Metall. 23, 1871 (1989).Google Scholar
9.Gray, G. T. III, Follansbee, P. S., and Frantz, C. E., Mater. Sci. Eng. Alll, 9 (1986).Google Scholar
10.Gray, G. T. III and Follansbee, P. S., Mater. Sci. Eng. A138, 23 (1991).Google Scholar
11.Edington, J. W., Philos. Mag. 19, 1189 (1969).CrossRefGoogle Scholar
12.Shioiri, J. and Satoh, K., Third Conf. Mech. Prop. High Rates of Strain, Oxford, Inst. Phys. Conf. Ser., n° 70, 89 (1984).Google Scholar
13.Shioiri, J. and Satoh, K., J. de Phys., Colloque C5, suppl. au n° 8, 46, 3 (1985).Google Scholar
14.Follansbee, P. S., Shock Waves in Condensed Matter (Plenum Press, New York, Spokane, 1985), p. 371.Google Scholar
15.Gray, G. T. III and Follansbee, P. S., Proceedings of “IMPACT 87”, Bremen, F.R. Germany (1987).Google Scholar
16.Mecking, H. and Knocks, U. F., Acta Metall. 29 (1), 1865 (1981).CrossRefGoogle Scholar
17.Estrin, Y. and Mecking, H., Acta Metall. 32 (1), 57 (1984).CrossRefGoogle Scholar
18.Strudel, J. L., J. Microsc. and Spect. Elect. 3, 337 (1978).Google Scholar
19.Davies, C. K. L., Sagar, V., and Stevens, R. N., Acta Metall. 21, 1343 (1973).CrossRefGoogle Scholar
20.Ardell, A. J., Metall. Trans. A 16A, 2131 (1985).CrossRefGoogle Scholar
21.Nordstrom, T. V. and Barrett, C. R., Acta Metall. 17, 139 (1969).CrossRefGoogle Scholar
22.Evans, K. R. and Flanagan, W. F., Philos. Mag. 17, 535 (1968).CrossRefGoogle Scholar
23.Coujou, A., Acta Metall. 31 (10), 1505 (1983).CrossRefGoogle Scholar
24.Coujou, A., Philos. Mag. Lett. 56 (1), 13 (1987).CrossRefGoogle Scholar
25.Vora, H., Fyfe, I. M., and Polonis, D., Mater. Sci. Eng. 32, 129 (1978).CrossRefGoogle Scholar
26.Phillips, V. A. and Livingstone, J. D., Philos. Mag. 7, 969 (1962).CrossRefGoogle Scholar
27.Phillips, V. A., Acta Metall. 14, 271 (1966).CrossRefGoogle Scholar
28.Livingstone, J. D., Trans. AIME 215, 566 (1959).Google Scholar
29.Kamal, E., J. Mater. Sci. Eng. 10, 1519 (1975).Google Scholar
30.Humphreys, F. J., Acta Metall. 16, 1069 (1968).CrossRefGoogle Scholar
31.Rao, K. V., Lee, K. H., and Polonis, D. H., Mater. Sci. Eng. 92, 91 (1987).Google Scholar
32.Hartmann, K. and Gerold, V., Mater. Sci. Eng. 10, 63 (1972).CrossRefGoogle Scholar
33.Amin, K., Gerold, V., and Kralik, G., J. Mater. Sci. 10, 1579 (1975).CrossRefGoogle Scholar
34.Davies, E. D. H. and Hunter, S. C., J. Mech. Phys. Solids 11, 155 (1963).CrossRefGoogle Scholar
35.Malinowski, J. Z. and Klepaczko, S. C., Int. J. Mech. Sci. 28 (6), 381 (1986).Google Scholar
36.Bay, B., Hansen, N., Hughes, A., and Kulhmann-Wilsdorf, D., Acta Metall. Mater. 40 (2), 205 (1992).CrossRefGoogle Scholar
37.Cheval, F. and Priester, L., J. de Phys., Colloque C3, suppl. Au n° 9, 49, 47 (1988).Google Scholar
38.Coujou, A., Beneteau, A., and Clement, N., Scripta Metall. 19, 891 (1985).Google Scholar
39.Mahajan, S. and Chin, G. Y., Acta Metall. 21, 1353 (1973).CrossRefGoogle Scholar
40.Swann, P. R., Electron Microscopy and Strength of Crystals, edited by Thomas, G. and Washburn, J. (Wiley-Interscience, New York, 1969), p. 131.Google Scholar
41.Servillano, J. Gil, Prog. Mater. Sci. 25, 69 (1981).CrossRefGoogle Scholar
42.Vohringer, O., in 2nd Int. Conf. on Strength of Metals and Alloys, ASM, 294 (1970).Google Scholar
43.Guinier, A. and Fournet, G., Small Angle Scattering of X-Rays (Wiley, New York, 1955). (1982).Google Scholar
44.Ancrenaz, P. and Servant, C., to be published in J. de Phys. (1992).Google Scholar
45.Hennion, M., Ronzaud, D., and Guyot, P., Acta Metall. 30, 599 (1982).CrossRefGoogle Scholar
46.Lifshitz, I. M. and Slyozov, V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar