Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T15:45:20.105Z Has data issue: false hasContentIssue false

Effect of Gold Addition on the Nanostructure of Amorphous Fe–Zr–B Alloy

Published online by Cambridge University Press:  31 January 2011

Y. Zhang*
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin, Germany, and Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
U. Czubayko
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin, Germany
N. Wanderka
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin, Germany
F. Zhu
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
H. Wollenberger
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin, Germany
*
a)Address all correspondence to this author. e-mail: yuan.zhang@materials.oxford.ac.uk
Get access

Abstract

The behavior of Au in the course of the primary crystallization process of Fe87Zr7B5Au1 amorphous alloy was examined by use of atom probe field ion microscopy and transmission electron microscopy. In the early stage of crystallization, Au atoms were still distributed uniformly in the amorphous matrix. Au atoms form clusters at a later stage when more α–Fe particles are present. The Au clusters were observed to be separated from α–Fe particles, indicating that Au clusters do not stimulate nucleation of α–Fe particles. During the growth of α–Fe grains, cosegregation of Au and Zr occurred without any influence on the α–Fe grain growth. We conclude that Au addition has no effect on nanocrystallization of Fe–Zr–B amorphous alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
2.Suzuki, K., Kataoka, N., Inoue, A., Makino, A., and Masumoto, T., Mater. Trans. JIM 31, 743 (1990).CrossRefGoogle Scholar
3.Suzuki, K., Makino, A., Inoue, A., and Masumoto, T., J. Appl. Phys. 70, 6232 (1991).CrossRefGoogle Scholar
4.Suzuki, K., Makino, A., Inoue, A., and Masumoto, T., J. Appl. Phys. 74, 3316 (1993).CrossRefGoogle Scholar
5.Yoshizawa, Y. and Yamauchi, K., Mater. Trans. JIM 31, 307 (1990).CrossRefGoogle Scholar
6.Naohara, T., Acta Mater. 46, 397 (1998).CrossRefGoogle Scholar
7.Vardiman, R.G., Ayers, J.D., and Jones, H.N., J. Mater. Sci. 30, 5711 (1995).CrossRefGoogle Scholar
8.Hono, K., Hiraga, K., Wang, Q., Inoue, A., and Sakurai, T., Acta Metall. Mater. 40, 2137 (1992).CrossRefGoogle Scholar
9.Kim, S.H., Matsuura, M., Sakurai, M., and Suzuki, K., Jpn. J. Appl. Phys. 32(Suppl. 32–2), 676 (1993).CrossRefGoogle Scholar
10.Ayers, J.D., Harris, V.G., Sprague, J.A., Elam, W.T., and Jones, H.N., Acta Mater. 46, 1861 (1998).CrossRefGoogle Scholar
11.Hono, K., Ping, D.H., Ohnuma, M., and Onodera, H., Acta Mater. 47, 997 (1999).CrossRefGoogle Scholar
12.Zhang, Y., Hono, K, Inoue, A., and Sakurai, T., Scr. Mater. 34, 1705 (1996).CrossRefGoogle Scholar
13.Zhang, Y., Zhu, F., Hono, K., Inoue, A., and Sakurai, T., Sci. China, Ser. E 41, 535 (1998).CrossRefGoogle Scholar
14.Yavari, A.R. and Drbohlav, O., Mater. Trans. JIM 36, 896 (1995).CrossRefGoogle Scholar
15.Kataoka, N., Matsunaga, T., Inoue, A., and Masumoto, T., Mater. Trans. JIM 30, 947 (1989).CrossRefGoogle Scholar
16.Zhang, Y., Wanderka, N., Zhu, F., and Wollenberger, H., Scr. Mater. 41, 97 (1999).CrossRefGoogle Scholar
17.Krakauer, B.W., Hu, J.G., Kuo, S-M., Mallick, R.L., Seki, A., Seidman, D.N., Baker, J.P., and Loyd, R.J., Rev. Sci. Instrum. 61, 3390 (1990).CrossRefGoogle Scholar
18.Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M., and Menand, A., Rev. Sci. Instrum. 64, 2911 (1993).CrossRefGoogle Scholar
19.Hono, K., Zhang, Y., Sukurai, T., and Inoue, A., Mater. Sci. Eng. A 250, 152 (1998).CrossRefGoogle Scholar
20.Camus, E. and Abromeit, C., J. Appl. Phys. 75, 2373 (1994).CrossRefGoogle Scholar
21.Cahn, R.W., in Materials Science and Technology Vol. 9: Glasses and Amorphous Materials, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, Germany; New York; Basel, Switzerland; and Cambridge, United Kingdom, 1991), pp. 493548.Google Scholar
22.Zhang, Y., Hono, K., Inoue, A., Makino, A., and Sakurai, T., Acta Mater. 44, 1497 (1996).CrossRefGoogle Scholar
23.De Boer, F.R., Boom, R., Mattens, W.C.M, Miedema, A.R., and Niessen, A.K., Cohesion in Metals: Transition Metal Alloys (North-Holland Physics Publishing, New York, 1988).Google Scholar