Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T20:59:35.012Z Has data issue: false hasContentIssue false

Effects of rare-earth oxide and alumina additives on thermal conductivity of liquid-phase-sintered silicon carbide

Published online by Cambridge University Press:  31 January 2011

You Zhou
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463–8687, Japan
Kiyoshi Hirao
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463–8687, Japan
Yukihiko Yamauchi
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463–8687, Japan
Shuzo Kanzaki
Affiliation:
Synergy Materials Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463–8687, Japan
Get access

Abstract

SiC ceramics were prepared from a β–SiC powder doped with two different sintering additives—a mixture of La2O3 and Y2O3 and a mixture of Al2O3 and Y2O3—by hot pressing and annealing. Their microstructures, phase compositions, lattice oxygen contents, and thermal conductivities were evaluated. The SiC doped with rare-earth oxides attained thermal conductivities in excess of 200 W/(m K); however, the SiC doped with additives containing alumina had thermal conductivities lower than 71 W/(m K). The high thermal conductivity of the rare-earth-oxide-doped SiC was attributed to the low oxygen content in SiC lattice, high SiC–SiC contiguity, and lack of β– to α–SiC polytypic transformation. The low thermal conductivity of the alumina-doped SiC was attributed to the point defects resulting from the dissolution of Al2O3 into SiC lattice and the occurrence of polytypic transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Prochazka, S., in Special Ceramics 6, edited by Popper, P. (British Ceramic Research Association, Stoke on Trent, U.K., 1975), pp. 171181.Google Scholar
Tanaka, H., in Silicon Carbide Ceramics 1, edited by Somiya, S. and Inomata, Y. (Elsevier, New York, 1991), pp. 213238.Google Scholar
Padture, N.P., J. Am. Ceram. Soc. 77, 519 (1994).Google Scholar
Kim, Y-W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 78, 3145 (1995).Google Scholar
Sciti, D. and Bellosi, A., J. Mater. Res. 16, 806 (2001).Google Scholar
Rixecker, G., Wiedmann, I., Rosinus, A., and Aldinger, F., J. Eur. Ceram. Soc. 21, 1013 (2001).Google Scholar
Zhou, Y., Hirao, K., Toriyama, M., Yamauchi, Y., and Kanzaki, S., J. Am. Ceram. Soc. 84, 1642 (2001).Google Scholar
Zhou, Y., Hirao, K., Yamauchi, Y., and Kanzaki, S., J. Eur. Ceram. Soc. 22, 2689 (2002).CrossRefGoogle Scholar
Cao, J.J., MoberlyChan, W.J., Jonghe, L.C. De, Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).Google Scholar
Tanaka, H. and Zhou, Y., J. Mater. Res. 14, 518 (1999).Google Scholar
Zhou, Y., Tanaka, H., Otani, S., and Bando, Y., J. Am. Ceram. Soc. 82, 1959 (1999).Google Scholar
Slack, G.A., J. Phys. Chem. Solids 34, 321 (1973).Google Scholar
Ogihara, S., Maeda, K., Takeda, Y., and Nakamura, K., J. Am. Ceram. Soc. 68, C-16 (1985).Google Scholar
Takeda, Y., Am. Ceram. Soc. Bull. 67, 1961 (1988).Google Scholar
Sakai, T. and Aikawa, T., J. Am. Ceram. Soc. 71, C-7 (1988).Google Scholar
Liu, D.M. and Lin, B.W., Ceram. Intl. 22, 407 (1996).Google Scholar
Volz, E., Roosen, A., Hartung, W., and Winnacker, A., J. Eur. Ceram. Soc. 21, 2089 (2001).Google Scholar
Zhan, G-D., Mitomo, M., and Mukherjee, A.K., J. Mater. Res. 17, 2327 (2002).Google Scholar
Zhan, G-D., Mitomo, M., Xie, R-J, and Mukherjee, A.K., J. Am. Ceram. Soc. 84, 2448 (2001).Google Scholar
Tanaka, H. and Iyi, N., J. Ceram. Soc. Jpn. 101, 1313 (1993).Google Scholar
Japanese Industrial Standards Committee, Testing Methods of Thermal Diffusivity, Specific Heat Capacity, and Thermal Conductivity for High Performance Ceramics by Laser Flash Methods, JIS R 1611–1991 (Japanese Standard Association, Tokyo, Japan, 1991).Google Scholar
Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., J. Appl. Phys. 32, 1679 (1961).Google Scholar
Kitayama, M., Hirao, K., Tsuge, A., Watari, K., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 83, 1985 (2000).Google Scholar
Sigl, L.S. and Kleebe, H.J., J. Am. Ceram. Soc. 76, 773 (1993).Google Scholar
Slack, G.A., Tanzilli, R.A., Pohl, R.O., and Vandersande, J.W., J. Phy. Chem. Solids 48, 641 (1987).Google Scholar
Virkar, A.V., Jackson, T.B., and Cutler, R.A., J. Am. Ceram. Soc. 72, 2031 (1989).Google Scholar
Jackson, T.B., Virkar, A.V., More, K.L., Dinwiddie, R.B., Jr., and R.A. Cutler, J. Am. Ceram. Soc. 80, 1421 (1997).Google Scholar
Hirao, K., Watari, K., Hayashi, H., and Kitayama, M., MRS Bull. 26, 451 (2001).Google Scholar
Abeles, B., Phys. Rev. 131, 1906 (1963).Google Scholar
Baranda, P. Sainz de, Knudsen, A.K., and Ruh, E., J. Am. Ceram. Soc. 76, 1761 (1993).Google Scholar
Hirosaki, N., Okamoto, Y., Ando, M., Munakata, F., and Akimune, Y., J. Am. Ceram. Soc. 79, 2878 (1996).Google Scholar
Klein, P.H. and Croft, W.J., J. Appl. Phys. 38, 1603 (1967).Google Scholar
Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 636.Google Scholar
Sigl, L.S., J. Eur. Ceram. Soc. 23, 1115 (2003).Google Scholar
Tajima, Y. and Kingery, W. D., J. Am. Ceram. Soc. 65, C-27 (1982).Google Scholar
Jepps, N.W. and Page, T.F., in Progress in Crystal Growth and Characterization, Vol. 7, edited by Krishna, P. (Pergamon, Oxford, U.K., 1983), pp. 259307.Google Scholar
Inomata, Y., Mitomo, M., Inoue, Z., and Tanaka, H., J. Ceram. Soc. Jpn. 77, 130 (1969).Google Scholar
Ogbuji, L.U., Mitchell, T.E., and Heuer, A.H., J. Am. Ceram. Soc. 64, 91 (1981).Google Scholar
Seo, W-E., Pai, C-H., Koumoto, K., and Yanagida, H., J. Ceram. Soc. Jpn. 100, 227 (1992).Google Scholar
Pujar, V.V. and Cawley, J.D., J. Am. Ceram. Soc. 78, 774 (1995).Google Scholar