Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T20:33:18.407Z Has data issue: false hasContentIssue false

Epitaxial growth of Fe/Mo/Fe(111) and Fe/Cr/Fe(111) on Si(111)

Published online by Cambridge University Press:  31 January 2011

Yang-Tse Cheng
Affiliation:
General Motors Research and Development Center, Warren, Michigan 48090-9055
Yen-Lung Chen
Affiliation:
General Motors Research and Development Center, Warren, Michigan 48090-9055
Get access

Abstract

Epitaxial body-centered cubic Mo and Cr films have been grown on the (111) surface of α–Fe films on Si(111) at 300 and 575 K by electron beam evaporation in ultrahigh vacuum. X-ray diffraction and transmission electron microscopy show that the Mo films are oriented with the (111) plane parallel to the α-Fe(111) plane and with the Mo[1$\overline 1$0] direction parallel to the Fe[1$\overline 1$0] direction in the plane of the substrate. The same orientation relationship holds for the Cr films epitaxially grown on α-Fe(111) surfaces. Epitaxial Fe(111)/Mo(111)/Fe(111) and Fe(111)/Cr(111)/Fe(111) films have also been grown on Si(111). This work provides new examples of low temperature epitaxy which can occur at a substrate temperature as low as 0.1 times the melting temperature of the deposited materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Markow, I. and Stoyanow, S.Contemp. Phys. 28, 276 (1987).Google Scholar
2Bauer, E.G.Dodson, B.W.Ehrlich, D.J.Feldman, L.C.Flynn, C.P., Geis, M. W.Harbison, J. P.Matyi, R.J.Peercy, P. S.Petroff, P. M.Phillips, J. M.Stringfellow, G. B. and Zangwill, A.J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
3Kato, M.Wada, M.Sato, A. and Mori, T.a Metall. 37, 749 (1989).Google Scholar
4Prinz, G.A.Science 250, 1092 (1990).CrossRefGoogle Scholar
5See, e.g., Growth, Characterization and Properties of Ultrathin Magnetic Films and Multilayers, edited by lonker, B.T.Heremans, J.P., and Marinaro, E. L. (Mater. Res. Soc Pittsburgh, PA, 1989).Google Scholar
6Baibich, M. N.Broto, J. M.Fert, A.Dau, F. Nguyen Van, Petroff, F.Eitenne, P.Creuzet, G.Friederich, A. and Chazelas, J.Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
7Parkin, S.S.P.More, N. and Roche, K.P.Phys. Rev. Lett. 64, 2304 (1990).CrossRefGoogle Scholar
8Purcell, S.T.Folkerts, W.Johnson, M.T.McGee, N.W.E.Jager, K.Stegge, J. aan de, Zeper, W. B.Hoving, W. and Grunberg, P.Phys. Rev. Lett. 67, 903 (1991).CrossRefGoogle Scholar
9Unguris, J.Celotta, R.J. and Pierce, D.T.Phys. Rev. Lett. 67, 140 (1991).CrossRefGoogle Scholar
10Kamijo, A. and Igarashi, H.J. Appl. Phys. 71, 2455 (1992).CrossRefGoogle Scholar
11Folkerts, W.Hoving, W. and Coene, W.J. Appl. Phys. 71, 362 (1992).CrossRefGoogle Scholar
12Shiroishi, Y.J. Appl. Phys. 62, 3694 (1987).CrossRefGoogle Scholar
13Sellers, C.Hilliard, J.E. and Ketterson, J.B.J. Appl. Phys. 68, 5778 (1990).Google Scholar
14Sakurai, J.Horie, M.Araki, S.Yamamoto, H. and Shinjo, T.J. Phys. Soc. Jpn. 60, 2522 (1991).CrossRefGoogle Scholar
15Takanachi, K.Obi, Y.Mitani, Y. and Fujimori, H.J. Phys. Soc. Jpn. 61, 1169 (1992).Google Scholar
16Fullerton, E.Kelly, D.M.Guimpel, J.Schuller, I. K. and Bruynseraede, Y.Phys. Rev. Lett. 68, 859 (1992).CrossRefGoogle Scholar
17Mattson, J. E.Brubaker, M. E.Sowers, C. H.Conover, M.Qiu, Z. and Bader, S. D.Phys. Rev. B 44, 9378 (1991).CrossRefGoogle Scholar
18Window, B.J. Appl. Phys. 63, 1080 (1988). 19.CrossRefGoogle Scholar
19Sato, N.IEEE Trans. Magn. 26, 2736 (1990).Google Scholar
20Brubaker, M.E.Mattson, J.E.Sowers, C.H. and Bader, S.D.Appl. Phys. Lett. 58, 2306 (1991).CrossRefGoogle Scholar
21Qiu, Z. Q.Pearson, J.Berger, A. and Bader, S.D.Phys. Rev. Lett. 68, 1398 (1992).CrossRefGoogle Scholar
22Cheng, Y.T.Chen, Y. L., Karmarkar, M.M. and Padamanabhan, K.R., J. Mater. Sci. Lett. 12, 467 (1993).Google Scholar
23Cheng, Y.T.Chen, Y.L., Karmarkar, M. M. and Meng, W. J.Appl. Phys. Lett. 59, 953 (1991).Google Scholar
24Cheng, Y.T.Chen, Y.L., Karmarkar, M.M. and Meng, W.J. in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C.Harbison, J. P.Peercy, P. S. and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 189.Google Scholar
25Cheng, Y.T. and Chen, Y.L.Appl. Phys. Lett. 60, 1951 (1992).Google Scholar
26X-ray Powder Diffraction File No. 4–809 (JCPDS-ICDD, 1990).Google Scholar
27X-ray Powder Diffraction File No. 6–696 (JCPDS-ICDD, 1987).Google Scholar
28X-ray Powder Diffraction File No. 6–694 (JCPDS-ICDD, 1990).Google Scholar
29Eizenberg, M.Segmuller, A.Heiblum, M. and Smith, D.A.J. Appl. Phys. 62, 466 (1987).CrossRefGoogle Scholar
30Chang, C.A.Phys. Rev. B 42, 11946 (1991).Google Scholar