Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-13T17:15:26.705Z Has data issue: false hasContentIssue false

Erosion of diamond films and graphite in oxygen plasma

Published online by Cambridge University Press:  31 January 2011

A. Joshi
Affiliation:
Lockheed Research and Development Division, Lockheed Missiles and Space Company, Inc., 3251 Hanover Street, Palo Alto, California 94304
R. Nimmagadda
Affiliation:
Lockheed Research and Development Division, Lockheed Missiles and Space Company, Inc., 3251 Hanover Street, Palo Alto, California 94304
Get access

Abstract

The nature and rates of erosion of diamond, graphite, and diamond-like carbon (DLC) films exposed to oxygen plasmas were evaluated by comparison of surface morphological changes and weight losses. The RF plasma oxidation at ambient temperature caused severe etching of graphite and DLC specimens, while causing only minor damage to diamond film surfaces. The results suggest that erosion by low energy ions is very selective to the sp2 and sp states compared to the sp3 state of carbon. The selectivity of etching by oxygen plasma is significant, as compared to what has been reported for hydrogen in atomic and ionic states, or for oxidation at elevated temperatures in molecular oxygen. These observations have significant implications to the synthesis of diamond films by chemical vapor deposition (CVD) as well as to the application of diamond film coatings on graphite or other substrates for protection against energetic atomic oxygen prevailing in the low earth orbits (LEO).

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kawato, T. and Kondo, K. K., Jpn. J. Appl. Phys. 26 (9), 1429 (1987).CrossRefGoogle Scholar
2.Chen, C.F., Huang, Y.C., Hosomi, S., and Yoshida, I., paper presented at the “First International Conference on the New Diamond Science and Technology”, Tokyo, Japan, October 24–26, 1988, p. 118.Google Scholar
3.Ito, T., Masuda, A., Eto, Y., Ito, K., and Nishimoto, K., paper presented at the “First International Conference on the New Diamond Science and Technology”, Tokyo, Japan, October 24–26, 1988, p. 122.Google Scholar
4.Harker, A. B. and DeNatale, J. F., J. Mater. Res. 5, 818 (1990).CrossRefGoogle Scholar
5.Meyer, D. E., Dillon, R. O., and Woollam, J. A., J. Vac. Sci. Technol. A 7 (3), 2325 (1989).CrossRefGoogle Scholar
6.Saito, Y., Sato, K., Tanaka, H., Fujita, K., and Matsuda, S., J. Mater. Sci. 23 (3), 842 (1988).CrossRefGoogle Scholar
7.Spear, K. E. and Frenklach, M., Proc. Electrochemical Society, 89–12, 122 (1989).Google Scholar
8.Chang, C. P., Flamm, D.L., Ibbotson, D.E., and Mucha, J.A., J. Appl. Phys. 63 (5), 1744 (1988).CrossRefGoogle Scholar
9.Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65 (9), 3448 (1989).CrossRefGoogle Scholar
10.Hata, C., Kamo, M., and Sato, Y., Abstract P2–13, paper presented at the “First International Conference on the New Diamond Science and Technology”, Tokyo, Japan, October 24–26, 1988, p. 116.Google Scholar
11.Evans, T. and Phaal, C., Proc. 5th Biennial Conference on Carbon, The Pennsylvania State University, University Park, PA, 147 (1962).CrossRefGoogle Scholar
12.Piano, L. S., Yokota, S., and Ravi, K. V., Proc. 1st Int. Symp. on Diamond and Diamond-like Films, 175th Electrochemical Society Meeting, 380 (1989).Google Scholar
13.Joshi, A., Nimmagadda, R., and Herrington, J., J. Vac. Sci. Technol. A 8, 2137 (1990).CrossRefGoogle Scholar
14.Johnson, C. E. and Weimer, W. A., in Extended Abstracts No. 19, Technology Update on Diamond Films, edited by Chang, R. P. H., Nelson, D., and Hiraki, A. (Materials Research Society, Pittsburgh, PA, 1989), p. 123.Google Scholar
15.Joshi, A., to be published in Thermal Analysis of Metallurgical Systems (TMS, Warrendale, PA, 1991).Google Scholar
16.Nimmagadda, R.R., Joshi, A., and Hsu, W.L., J. Mater. Res. 5, 2445 (1990).CrossRefGoogle Scholar
17.McCargo, M., Dammann, R.A., Cummings, T., and Carpenter, C., Proc. 3rd European Symp. on Spacecraft Materials in Space Environment, Noordwijk, The Netherlands, October 1–4, 1985.Google Scholar
18.McCargo, M., Dammann, R. A., Robinson, J. C., and Milligan, R. J., Proc. Int. Symp. on Environmental and Thermal Systems for Space Vehicles, Toulouse, France, October 4–7, 447 (1983).Google Scholar
19.Derjaguin, B. V. and Fedoseev, D. V., Growth of Diamond and Graphite from the Gas Phase (Izd. Nauka, Moscow, 1977).Google Scholar
20.Setaka, N., J. Mater. Res. 4, 664 (1989).CrossRefGoogle Scholar
21.Oda, S., Ishihara, S., Shibata, N., Shirai, H., Miyauchi, A., Fukuda, K., Tanabe, A., Ohtoshi, H., Hanna, J., and Shimizu, I., Jpn. J. Appl. Phys. 25 (3), L188 (1986).CrossRefGoogle Scholar
22.Hsu, W.L., J. Vac. Sci. Technol. A 6, 1803 (1988).CrossRefGoogle Scholar
23.Frenklach, M., J. Appl. Phys. 65, 5142 (1989).CrossRefGoogle Scholar
24.Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
25.King, A.B. and Wise, H., J. Phys. Chem. 67, 1163 (1963).CrossRefGoogle Scholar
26.Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, L519 (1986).CrossRefGoogle Scholar
27.Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 109; J. Mater. Res. 5, 2305 (1990).Google Scholar
28.Inspektor, A., Liou, Y., McKenna, T., and Messier, R., Surf. Coat. Technol. 39/40, 211 (1989).CrossRefGoogle Scholar
29.Harris, S. J. and Weiner, A. M., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R.F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 103.Google Scholar