Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T06:32:39.040Z Has data issue: false hasContentIssue false

Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni

Published online by Cambridge University Press:  31 January 2011

Keiichiro Oh-ishi
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812–8581, Japan
Zenji Horita
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812–8581, Japan
David J. Smith
Affiliation:
Center for Solid State Science and Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287
Ruslan Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, Russia
Minoru Nemoto
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812-8581, Japan
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453
Get access

Abstract

A Ni–Al–Cr alloy with an initial grain size of ∼60 μm was subjected to torsion straining to a strain of ∼7 at room temperature, thereby reducing the grain size to ∼34 nm. Similar torsion straining with samples of pure Cu and pure Ni gave grain sizes of ∼170 and ∼130 nm, respectively. Inspection of the Ni–Al–Cr alloy after torsion straining revealed highly strained regions containing dislocations associated with lattice distortions but with an absence of any Ni3Al ordered phase. The ultrafine grains in the Ni–Al–Cr alloy were extremely stable at high temperatures, and it was possible to retain a grain size of less than 100 nm after annealing at temperatures up to ∼900 K. By contrast, there was rapid grain growth in the samples of pure Cu and Ni at annealing temperatures in the vicinity of ∼500 K. The stability of the grains in the Ni–Al–Cr alloy is attributed to the formation of a Ni3Al-based ordered phase after annealing at ∼650–700 K. The presence of this phase also leads to an apparent negative slope in the standard Hall–Petch relationship.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.Google Scholar
2.Sanders, P.G., Fougere, G.E., Thompson, L.J., Eastman, J.A., and Weertman, J.R., Nanostruct. Mater. 8, 243 (1997).CrossRefGoogle Scholar
3.Koch, C.C. and Cho, Y.S., Nanostruct. Mater. 1, 207 (1992).CrossRefGoogle Scholar
4.Eckert, J., Holzer, J.C., Krill, C.E., and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
5.Koch, C.C., Nanostruct. Mater. 9, 13 (1997).CrossRefGoogle Scholar
6.Rigney, D.A., Annu. Rev. Mater. Sci. 18, 141 (1988).CrossRefGoogle Scholar
7.Valiev, R.Z. and Tsenev, N.K., in Hot Deformation of Aluminum Alloys, edited by Langdon, T.G., Merchant, H.D., Morris, J.G., and Zaidi, M.A., (Minerals, Metals, and Materials Society, Warrendale, PA, 1991), p. 319.Google Scholar
8.Valiev, R.Z., Krasilnikov, N.A., and Tsenev, N.K., Mater. Sci. Eng. 137A, 35 (1991).CrossRefGoogle Scholar
9.Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E., and Kopylov, V.I., Russian Metallurgy (Metally) 1, 99 (1981).Google Scholar
10.Smirnova, N.A., Levit, V.I., Pilyugin, V.I., Kuznetsov, R.I., Davydova, L.S., and Sazonova, V.A., Fiz. Metal. Metalloved. 61, 1170 (1986).Google Scholar
11.Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 11, 1880 (1996).CrossRefGoogle Scholar
12.Horita, Z., Smith, D.J., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 13, 446 (1998).CrossRefGoogle Scholar
13.Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., Acta Mater. 44, 2973 (1996).CrossRefGoogle Scholar
14.Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., and Langdon, T.G., Acta Mater. 45, 4751 (1997).CrossRefGoogle Scholar
15.Valiev, R.Z., Salimonenko, D.A., Tsenev, N.K., Berbon, P.B., and Langdon, T.G., Scripta Mater. 37, 1945 (1997).CrossRefGoogle Scholar
16.Berbon, P.B., Tsenev, N.K., Valiev, R.Z., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 29A, 2237 (1998).CrossRefGoogle Scholar
17.Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., and Langdon, T.G., Phil. Mag. Lett. 78, 313 (1998).CrossRefGoogle Scholar
18.Korznikov, A., Dimitrov, O., and Korznikova, G., Ann. Chim. 21, 443 (1996).Google Scholar
19.Senba, H. and Igarashi, M., Mater. Trans. JIM 37, 821 (1996).CrossRefGoogle Scholar
20.Senba, H. and Igarashi, M., Proceedings of the Second International Symposium on Structural Intermetallics (ISSI-2), edited by Nathal, M.V. (Minerals, Metals, and Materials Society, Warrendale, PA, 1997), p. 595.Google Scholar
21.Hall, E.O., Proc. Phys. Soc. B64, 747 (1951).CrossRefGoogle Scholar
22.Petch, N.J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
23.Watanabe, M., Horita, Z., and Nemoto, M., Ultramicroscopy 65, 187 (1996).CrossRefGoogle Scholar
24.Languillaume, J., Chmelik, F., Kapelski, G., Bordeaux, F., Nazarov, A.A., Canova, G., Esling, C., Valiev, R.Z., and Baudelet, B., Acta Metall. Mater. 41, 2953 (1993).CrossRefGoogle Scholar
25.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
26.Valiev, R.Z., Chmelik, F., Bordeaux, F., Kapelski, G., and Baudelet, B., Scripta Metall. Mater. 27, 855 (1992).CrossRefGoogle Scholar
27.Weertman, J.R. and Sanders, P.G., Solid State Phenom. 35–36, 249 (1994).Google Scholar
28.Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z., and Langdon, T.G., Philos. Mag. A 78, 203 (1998).CrossRefGoogle Scholar
29.Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
30.Nieh, T.G. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar
31.Scattergood, R.O. and Koch, C.C., Scripta Metall. Mater. 27, 1195 (1992).CrossRefGoogle Scholar
32.Lian, J. and Baudelet, B., Nanostruct. Mater. 2, 415 (1993).CrossRefGoogle Scholar
33.Li, S., Sun, L. and Wang, Z., Nanostruct. Mater. 2, 653 (1993).CrossRefGoogle Scholar
34.Weertman, J.R., Mater. Sci. Eng. A166, 161 (1993).CrossRefGoogle Scholar
35.Schiøtz, J., Di Tolla, F.D., and Jacobsen, K.W., Nature 391, 561 (1998).CrossRefGoogle Scholar