Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-14T03:43:55.076Z Has data issue: false hasContentIssue false

Formation of graphite encapsulated ferromagnetic particles and a mechanism for their growth

Published online by Cambridge University Press:  31 January 2011

A. A. Setlur
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
J. Y. Dai
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
J. M. Lauerhaas
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
P. L. Washington
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Graphite encapsulated nanoparticles have numerous possible applications due to their novel properties and their ability to survive rugged environments. Evaporation of Fe, Ni, or Co with graphite in a hydrogen atmosphere results in graphite encapsulated nanoparticles found on the chamber walls. Similar experiments in helium lead to nanoparticles embedded in an amorphous carbon/fullerene matrix. Comparing the experimental results in helium and hydrogen, we propose a mechanism for the formation of encapsulated nanoparticles. The hydrogen arc produces polycyclic aromatic hydrocarbon (PAH) molecules, which can act as a precursor to the graphitic layers around the nanoparticles. Direct evidence for this mechanism is given by using pyrene (C16H10), a PAH molecule, as the only carbon source to form encapsulated nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature (London) 354, 58 (1991).CrossRefGoogle Scholar
2.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
3.Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346 (1993).CrossRefGoogle Scholar
4.Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Nature (London) 362, 503 (1993).CrossRefGoogle Scholar
5.Guerret-Piécourt, C., Bouar, Y. Le, Loiseau, A., and Pascard, H., Nature (London) 372, 761 (1994).CrossRefGoogle Scholar
6.Setlur, A. A., Lauerhaas, J. M., Dai, J. Y., and Chang, R. P. H., Appl. Phys. Lett. 69, 345 (1996).CrossRefGoogle Scholar
7.Dai, J. Y., Lauerhaas, J. M., Setlur, A. A., and Chang, R. P. H., Chem. Phys. Lett. 258, 547 (1996).CrossRefGoogle Scholar
8.Saito, Y., Yoshkawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 212, 379 (1993).CrossRefGoogle Scholar
9.Saito, Y. and Masuda, M., Jpn. J. Appl. Phys. 34, 5594 (1995).CrossRefGoogle Scholar
10.Scott, J. H. J. and Majetich, S. A., Phys. Rev. B 52, 12 564 (1995).CrossRefGoogle Scholar
11.Bethune, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R., Nature (London) 363, 605 (1993).CrossRefGoogle Scholar
12.McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M., and Staley, S. W., Phys. Rev. B 49, 11 358 (1994).CrossRefGoogle Scholar
13.Dravid, V. P., Host, J. J., Teng, M. H., Elliot, B., Hwang, J., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature (London) 374, 602 (1995).CrossRefGoogle Scholar
14.Host, J. J., Teng, M. H., Elliot, B. R., Hwang, J-H., Mason, T. O., Dravid, V. P., and Johnson, D. L., J. Mater. Res. 12, 1268 (1997).CrossRefGoogle Scholar
15.Seraphin, S., Zhou, D., and Jiao, J., J. Appl. Phys. 80, 2097 (1996).CrossRefGoogle Scholar
16.Seraphin, S., J. Electrochem. Soc. 142, 290 (1995).CrossRefGoogle Scholar
17.Elliot, B. R., Host, J. J., Dravid, V. P., Teng, M. H., and Hwang, J-H., J. Mater. Res. 12, 3228 (1997).Google Scholar
18.Wang, X. K., Lin, X. W., Mesleh, M., Jarrold, M. F., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., J. Mater. Res. 10, 1977 (1995).CrossRefGoogle Scholar
19.Rodriguez, N. M., J. Mater. Res. 8, 3233 (1993).CrossRefGoogle Scholar
20.Lauerhaas, J. M., Dai, J. Y., Setlur, A. A., and Chang, R. P. H., J. Mater. Res. 12, 1536 (1997).CrossRefGoogle Scholar
21.Kroto, H. W. and McKay, K., Nature (London) 331, 328 (1988).CrossRefGoogle Scholar
22.Kiang, C-H. and Goddard, W. A., Phys. Rev. Lett. 76, 2515 (1996).CrossRefGoogle Scholar
23.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., and Smalley, R. E., Science 273, 483 (1996).CrossRefGoogle Scholar
24.Hamilton, J. C. and Blakely, J. M., Surf. Sci. 91, 199 (1980).CrossRefGoogle Scholar
25.Shelton, J. C., Patil, H. R., and Blakely, J. M., Surf. Sci. 43, 493 (1974).CrossRefGoogle Scholar
26.Nardo, S. Di, Lozzi, L., Passacantando, M., Picozzi, P., Santucci, S., and De Crescenzi, M., Surf. Sci. 307–309, 922 (1994).CrossRefGoogle Scholar
27.Fortner, J., Yu, R. Q., and Lannin, J. S., J. Vac. Sci. Technol. A 8, 3493 (1990).CrossRefGoogle Scholar