Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-14T20:27:57.835Z Has data issue: false hasContentIssue false

Fundamental studies of the influence of boron on the graphite-oxygen reaction using in situ electron microscopy techniques

Published online by Cambridge University Press:  31 January 2011

N.M. Rodriguez
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
R.T.K. Baker
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Controlled atmosphere electron microscopy coupled with in situ electron diffraction has been used to follow the manner by which the addition of boron oxide influences the graphite-oxygen reaction. Continuous observations of the process show that at about 450 °C the boron oxide undergoes a strong interaction with both the graphite edge and the basal plane regions, and this results in a spreading of the oxide to form a uniform thin adherent film over the entire substrate. The coated graphite specimens appear to be impervious to attack by oxygen at temperatures below 815 °C. Above this temperature, however, there is a weakening of the additive-graphite interaction with the “armchair” {11$\overline 1$0} faces, and these regions then become vulnerable to attack by oxygen. At the same time very shallow pits are observed to develop in the basal plane, and this action coincides with the appearance of boron carbide species in the electron diffraction pattern. In a complementary series of experiments, it is found that boron carbide is an extremely active catalyst for the graphite-oxygen reaction even at temperatures as low as 100 °C. The impact of these low pressure studies on the behavior of carbon structures used in aerospace applications is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fitzer, E. and Gadov, R., Am. Ceram. Soc. Bull. 65, 326 (1986).Google Scholar
2Luthra, K. L., Carbon 26, 217 (1988).CrossRefGoogle Scholar
3McKee, D.W., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr., and Thrower, P. A. (Marcel Dekker, New York, 1981), p. 1.Google Scholar
4Magne, P., Amariglio, H., and Duval, X., Bull. Soc. Chim. France 6, 2005 (1961).Google Scholar
5Arevalo-Navarro, M. C. and Jenkins, G. M., 4th Int. Carbon Conf., London, p. 392 (1974).Google Scholar
6McKee, D.W., Spiro, C.L., and Lamby, E.J., Carbon 22, 507 (1984).Google Scholar
7Jawed, I. and Nagle, D. C., Mater. Res. Bull. XXI, 1391 (1986).Google Scholar
8McKee, D.W., Spiro, C.L., and Lamby, E.J., Carbon 22, 285 (1984).Google Scholar
9Ehrburger, P., Baranne, P., and Lahaye, J., Carbon 24, 495 (1986).CrossRefGoogle Scholar
10McKee, D.W., Carbon 25, 551 (1987).Google Scholar
11McKee, D.W., Carbon 26, 659 (1988).CrossRefGoogle Scholar
12Allardice, D. J. and Walker, P. L. Jr., Carbon 8, 375 (1970).Google Scholar
13Thomas, J. M., in Chemistry andPhysics of Carbon, edited by Walker, P. L. (Marcel Dekker, New York, 1965), Vol. 1, p. 122.Google Scholar
14Baker, R. T. K., Sherwood, R. D., and Dumesic, J., J. Catal. 62, 221 (1980).CrossRefGoogle Scholar
15Baker, R.T.K. and Chludzinski, J.J., Carbon 19, 75 (1981).CrossRefGoogle Scholar
16Baker, R.T.K., in Carbon and Coal Gasification-Science and Technology (Martinus Nijhoff, NATO ASI Series, No. 105, 1986), p. 231.CrossRefGoogle Scholar
17Baker, R.T.K., Carbon 24, 715 (1986).CrossRefGoogle Scholar
18Neumann, B., Kroger, C., and Fingas, E., Z. Anorg. Chem. 197, 321 (1931).Google Scholar
19Rodriguez, N.M., Oh, S.G., Downs, W.B., Pattabiraman, P., and Baker, R. T. K., Rev. Sci. Instrum. 61, 1863 (1990).CrossRefGoogle Scholar
20Oh, S. G., Rodriguez, N. M., and Baker, R. T. K., J. Catal. 136, 584 (1992).CrossRefGoogle Scholar
21Hennig, G. R., in Chemistry andPhysics of Carbon, edited by Walker, P. L. (Marcel Dekker, New York, 1966), Vol. 2, p. 1.Google Scholar
22Baker, R. T. K. and Harris, P. S., Carbon 11, 15 (1973).CrossRefGoogle Scholar
23Evans, E. L., Griffiths, R. J. M., and Thomas, J. M., Science 171, 174 (1971).CrossRefGoogle Scholar
24Heintz, E.A. and Parker, W.E., Carbon 4, 473 (1966).CrossRefGoogle Scholar
25Hennig, G. R., J. Chem. Phys. 40, 2877 (1964)CrossRefGoogle Scholar
26Feates, F. S., Trans. Faraday Society 64, 3093 (1968).CrossRefGoogle Scholar
27Feates, F. S. and Robinson, P. S., 3rd Conf. Ind. Carbon and Graphite, Soc. Chem. Ind., London (1971).Google Scholar
28Montet, G. L. and Myers, G. S., Carbon 6, 627 (1968).Google Scholar
29Yang, R.T. and Wong, C., AIChE J. 29, 338 (1983).CrossRefGoogle Scholar
30Yang, R.T. and Wong, C., J. Catal. 85, 154 (1984).CrossRefGoogle Scholar
31Yang, R. T., Wong, C., and Halpern, B. L., J. Chem. Phys. 78, 3325 (1983).Google Scholar
32Dienes, G. J., Hennig, G. R., and Koshiba, W., Proc. Soc. Int. Conf Peaceful Uses of Atomic Energy, Geneva, Paper No. 1778 (1958).Google Scholar
33Marsh, H., O'Hair, E., and Wynne-Jones, W. F. K., Nature 198, 1195 (1963).CrossRefGoogle Scholar
34Marsh, H., O'Hair, E., and Reed, R., Trans. Faraday Society 61, 285 (1965).Google Scholar
35Otterbein, M. and Bonnetain, L., Compt. Rend. 259 (4), 791 (1964).Google Scholar
36Pattabiraman, P., Rodriguez, N. M., Jang, B. Z., and Baker, R. T. K., Carbon 28, 867 (1990).CrossRefGoogle Scholar