Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T15:44:10.476Z Has data issue: false hasContentIssue false

Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior

Published online by Cambridge University Press:  31 January 2011

Liang Cheng
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
Liyun Wang
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
Anette M. Karlsson*
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
*
a)Address all correspondence to this author. e-mail: karlsson@udel.edu
Get access

Abstract

The microstructures of exoskeletons from Homarus americanus (American lobster) and Callinectes sapidus (Atlantic blue crab) were investigated to elucidate the mechanical behavior of such biological composites. Image analyses of the cross-sectioned exoskeletons showed that the two species each have three well-defined regions across the cuticle thickness where the two innermost regions (exocuticle and endocuticle) are load bearing. These regions consist of mineralized chitin fibers aligned in layers, where a gradual rotation of the fiber orientation of the layers results in repeating stacks. The exocuticle and endocuticle of the two species have similar morphology, but different thicknesses, number of layers, and number of stacks. Mechanics-based analyses showed that the morphology of the layered structure corresponds to a nearly isotropic structure. The cuticles are inter-stitched with pore canal fibers, running transversely to the layered structure. Mechanics-based analyses suggested that the pore canal fibers increase the interlaminar strength of the exoskeleton.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Weiner, S., Addadi, L.: Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689 1997Google Scholar
2Vincent, J.F.V.: Deconstructing the design of a biological material. J. Theor. Biol. 236, 73 2005CrossRefGoogle ScholarPubMed
3Neville, A.C.: Biology of the Arthropod Cuticle Springer-Verlag New York 1975Google Scholar
4Rudall, K.M., Kenching, W.: Chitin system. Biol. Rev. Camb. Philos. Soc. 48, 597 1973Google Scholar
5Neville, A.C., Parry, D.A.D., Woodheadgalloway, J.: Chitin crystallite in arthropod cuticle. J. Cell Sci. 21, 73 1976CrossRefGoogle ScholarPubMed
6Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 2001Google Scholar
7Evans, A.G., Suo, Z., Wang, R.Z., Aksay, I.A., He, M.Y., Hutchinson, J.W.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 2001CrossRefGoogle Scholar
8Katti, D.R., Katti, K.S., Sopp, J.M., Sarikaya, M.: 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Comput. Theor. Polym. Sci. 11, 397 2001Google Scholar
9Katti, K., Katti, D.R., Tang, J., Pradhan, S., Sarikaya, M.: Modeling mechanical responses in a laminated biocomposite, Part II. Nonlinear responses and nuances of nanostructure. J. Mater. Sci. 40, 1749 2005Google Scholar
10Sanchez, C., Arribart, H., Guille, M.M.G.: Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277 2005CrossRefGoogle ScholarPubMed
11Ji, B.H., Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963 2004CrossRefGoogle Scholar
12Bouligan, Y.: Twisted fibrous arrangements in biological-materials and cholesteric mesophases. Tissue Cell 4, 189 1972CrossRefGoogle Scholar
13Giraud-Guille, M.M.: Plywood structure in nature. Curr. Opin. Solid State Mater. Sci. 3, 221 1998CrossRefGoogle Scholar
14Compere, P., Goffinet, G.: Ultrastructural shape and 3-dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab Carcinus maenas. Tissue Cell 19, 839 1987Google Scholar
15Raabe, D., Romano, P., Sachs, C., Fabritius, H., Al-Sawalmih, A., Yi, S., Servos, G., Hartwig, H.: Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng., A 421, 143 2006Google Scholar
16Compere, P., Goffinet, G.: Elaboration and ultrastructural-changes in the pore canal system of the mineralized cuticle of Carcinus Maenas during the molting cycle. Tissue Cell 19, 859 1987CrossRefGoogle Scholar
17Mutvei, H.: SEM studies on arthropod exoskeletons. Part 1: Decapod crustaceans, Homarus gammarus L and Carcinus maenas (L.). Bull. Geol. Inst. Univ. Uppsala: New Series 4(5), 73 1974Google Scholar
18Raabe, D., Sachs, C., Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53, 4281 2005CrossRefGoogle Scholar
19Hillerton, J.E., Vincent, J.F.V.: Consideration of the importance of hydrophobic interactions in stabilizing insect cuticle. Int. J. Biol. Macromol. 5, 163 1983CrossRefGoogle Scholar
20Rebers, J.E., Willis, J.H.: A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31, 1083 2001CrossRefGoogle ScholarPubMed
21Akiva, U., Wagner, H.D., Weiner, S.: Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J. Mater. Sci. 33, 1497 1998CrossRefGoogle Scholar
22Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J.: Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: Fundamentals and application to strength of hydroxyapatite biomaterials. J. Mater. Sci. 42, 8824 2007Google Scholar
23Fritsch, A., Hellmich, C.: “Universal” microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244, 597 2007Google Scholar
24Vinson, J.R., Sierakowski, R.L.: The Behavior of Structures Composed of Composite Materials Kluwer Academic Publishers Boston 2002Google Scholar
25Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis CRC Press New York 1997Google Scholar
26Wegst, U.G.K., Ashby, M.F.: The mechanical efficiency of natural materials. Philos. Mag. 84, 2167 2004CrossRefGoogle Scholar
27Currey, J.D., Nash, A., Bonfield, W.: Calcified cuticle in the stomatopod smashing limb. J. Mater. Sci. 17, 1939 1982CrossRefGoogle Scholar
28Ker, R.F.: Some structural and mechanical properties of locust and beetle cuticle.D. Phil. Thesis University of Oxford Oxford, UK 1977Google Scholar
29Vincent, J.F.V.: Insect cuticle: A paradigm for natural composites in Symposia of the society for experimental biology Cambridge University Press Cambridge, UK 1980Google Scholar
30Vincent, J.F.V.: Arthropod cuticle: A natural composite shell system. Compos. A Appl. Sci. Manuf 33, 1311 2002Google Scholar
31Sachs, C., Fabritius, H., Raabe, D.: Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J. Mater. Res. 21, 1987 2006Google Scholar
32Barshaw, D.E., Lavalli, K.L., Spanier, E.: Offense versus defense: Responses of three morphological types of lobsters to predation. Mar. Ecol. Prog. Ser. 256, 171 2003CrossRefGoogle Scholar
33Dransfield, K.A., Jain, L.K., Mai, Y.W.: On the effects of stitching in CFRPs I. Mode I delamination toughness. Compos. Sci. Technol. 58, 815 1998Google Scholar
34Jain, L.K., Dransfield, K.A., Mai, Y.W.: On the effects of stitching in CFRPs II. Mode II delamination toughness. Compos. Sci. Technol. 58, 829 1998CrossRefGoogle Scholar
35Jain, L., Mai, Y.: On the effect of stitching on mode-I delamination toughness of laminated composites. Compos. Sci. Technol. 51, 331 1994Google Scholar
36Jain, L.K., Mai, Y.W.: Analysis of stitched laminated enf specimens for interlaminar mode-II fracture-toughness. Int. J. Fract. 68, 219 1994Google Scholar
37Hahn, H.T.: Simplified formulas for elastic moduli of unidirectional continuous fiber composites. Compos. Technol. Rev. 2, 5 1980Google Scholar