Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T22:37:53.888Z Has data issue: false hasContentIssue false

Influence of Fe impurity in nitridation of Si + B4C green compact

Published online by Cambridge University Press:  31 January 2011

Dangrong R. Liu
Affiliation:
Ford Research Laboratory, Ford Motor Company, 20000 Rotunda Drive, Dearborn, Michigan 48121
Samuel Shinozaki
Affiliation:
Ford Research Laboratory, Ford Motor Company, 20000 Rotunda Drive, Dearborn, Michigan 48121
Motoyuki Miyata
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 1-1 Omika-Cho, 7-Chome, Hitachi-shi, Ibaraki-ken, 319-12 Japan
Yoshiyuki Yasutomi
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 1-1 Omika-Cho, 7-Chome, Hitachi-shi, Ibaraki-ken, 319-12 Japan
Get access

Extract

The addition of B4C powder retarded the nitridation of the silicon powder green body by the formation of a borosilicate layer in interfaces between Si grains. The viscous layers hindered the SiO formation and the Si and N diffusion. Despite the presence of borosilicate layers, the Fe impurity in the green body still promoted the Si nitridation process by the formation of fluid iron silicide and the promotion of the B4C conversion to BN in gaps or holes in the viscous borosilicate layers. The addition of 5% H2 in the N2 atmosphere accelerated the Si + B4C nitridation, where the hydrogen acted as an oxygen getter, thus reducing the amount of glassy borosilicate in the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Boyer, S.M., Sang, D., and Moulson, A. J., Nitrogen Ceramics, edited by Riley, F. L. (Noordhoff Leyden Publishers, 1977), p. 297.CrossRefGoogle Scholar
2.Boyer, S.M. and Moulson, A. J., J. Mater. Sci. 13, 1637 (1978).CrossRefGoogle Scholar
3.Gazzara, C. P. and Messier, D. R., AMMRC TR-75-4, February 1975.Google Scholar
4.Jack, K.H. and Thompson, D. P., Progress Report No. 11 of Ministry of Defense Contract Aty2043y028 AML, University of Newcastle-Upon-Type, June 1973.Google Scholar
5.Jayatilaka, A. de S. and Leake, J.A., Nitrogen Ceramics, edited by Riley, F. L. (Noordhoff Leyden Pub., 1977), p. 289.CrossRefGoogle Scholar
6.Jennings, H.M. and Richman, M.H., Mater. Sci. 11, 2087 (1976).CrossRefGoogle Scholar
7.Lange, F. F., Int. Metals Rev., 1 (1980).Google Scholar
8.Mangels, J.A., J. Am. Ceram. Soc. 58, 354 (1975).CrossRefGoogle Scholar
9.Miyata, M. and Yasutomi, Y., J. Ceram. Soc. Jpn. (int. ed.) 102, 935 (1994).CrossRefGoogle Scholar
10.Moulson, A. J., J. Mater. Sci. 14, 1017 (1979).CrossRefGoogle Scholar
11.Riley, F. L., Progress in Nitrogen Ceramics, edited by Riley, F. L. (Martinus Nijhoff Publishers, The Hague, 1983), p. 121.CrossRefGoogle Scholar
12.Rochett, T. J. and Foster, W. R., J. Am. Ceram. Soc. 49, 78 (1965).Google Scholar
13.Shinozaki, S. and Milberg, M. E., J. Am. Ceram. Soc. 64, 382 (1981).CrossRefGoogle Scholar
14.Wagner, C.D., Riggs, W.M., Davis, L. E., Moulder, J. F., and E.Muilenberg, G., Handbook of X-ray Photoelectron Spectroscopy, (Perkin-Elmer Co., Physical Electronics Division, Eden Prairie, MN, 1979), p. 36.Google Scholar
15.Yasutomi, Y., Sobue, M., Shinozaki, S., ad Hangas, J., J. Ceram. Soc. Jpn. (int. ed.) 99, 14 (1991).Google Scholar