Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T14:32:18.924Z Has data issue: false hasContentIssue false

Ion beam analysis of laser-deposited high Tc YBa2Cu3O7 superconducting thin films

Published online by Cambridge University Press:  31 January 2011

Rajiv K. Singh
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
Get access

Abstract

We have performed Rutherford backscattering spectrometry, non-Rutherford proton elastic scattering, and axial ion channeling analysis to determine the composition, the crystallinity, and the epitaxial quality of YBa2Cu3O7 superconducting thin films on (100) SrTiO3 and (100) yttria stabilized zirconia (YSZ) substrates. YBa2Cu3O7 superconducting thin films were fabricated both by high and low temperature laser ablation techniques. The former method requires high temperature annealing in oxygen to recover the superconducting properties, whereas in the latter method as-deposited in situ superconducting thin films are formed at low processing temperatures (500 °C–650 °C). Helium ions in the energy range of 2.0–2.5 MeV were used to determine the relative stoichiometries of the heavier atomic number elements (Y, Ba, Cu) in the film, but are not sensitive enough to determine the relative amount of oxygen in the superconducting phase. The detection sensitivities to oxygen can be greatly enhanced by using the proton elastic scattering [16O(p,p) 16O] reaction, which was found to increase the scattering cross section by a factor of 3 to 5 relative to the Rutherford scattering cross section. The ion-channeling of YBa2Cu3O7 superconducting thin films on (100) SrTiO3 substrates showed excellent minimum channeling yields corresponding to epitaxial growth, but the presence of defects increased the channeling yields for films deposited on (100) YSZ substrates. The ion channeling yields are compared with the microstructure of the films determined by transmission electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Stoffel, N. G., Morris, P. A., Bonner, W. A., and Wilkens, B. J., Phys. Rev. B 37, 2297 (1988).CrossRefGoogle Scholar
2Rauhala, E., Keinonen, J., and Jarvinene, R., Appl. Phys. Lett. 52, 1520 (1988).CrossRefGoogle Scholar
3Narayan, J., Biunno, N., Singh, R. K., Holland, O., and Auchiello, O., Appl. Phys. Lett. 51, 1845 (1987).CrossRefGoogle Scholar
4Friere, F. L., Leite, C. V. Barros, Patnaik, B. K., Baptista, G. B., Naugle, D., Pandey, R. K., and Kirk, W., J. Appl. Phys. 65, 400 (1989).CrossRefGoogle Scholar
5Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, New York, 1977).Google Scholar
6Amsel, G., Nadai, J., Artemarte, E. D., David, D., Girard, E., and Moulin, J., Nucl. Instrum. Methods 92, 481 (1971).CrossRefGoogle Scholar
7Picraux, S. T., Nucl. Instrum. Methods 149, 289 (1978).CrossRefGoogle Scholar
8Gosset, C. R., Nucl. Instrum. Methods 218, 149 (1983).CrossRefGoogle Scholar
9Cameroon, J. R., Phys. Rev. 90, 839 (1953).CrossRefGoogle Scholar
10Amsel, G., Anal. Phys. 9, 247 (1964).Google Scholar
11Luomajarvi, M., Rahuala, E., and Hautala, M., Nucl. Instrum. Methods B9, 258 (1985).Google Scholar
12Appleton, B. R. and Foti, G., in Ion Beam Handbook for Materials Analysis, edited by Mayer, J. W. and Rimini, E. (Academic Press, New York, 1977).Google Scholar
13Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
14Singh, R. K., Biunno, N., and Narayan, J., Appl. Phys. Lett. 53, 1013 (1988).CrossRefGoogle Scholar
15Singh, R. K., Narayan, J., Singh, A. K., and Krishnaswamy, J., Appl. Phys. Lett. 54, 2271 (1989).CrossRefGoogle Scholar
16Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K., Hitterman, R. L., Grace, J. D., and Schuller, I. V., Phys. Rev. B 36, 3608 (1988).CrossRefGoogle Scholar
17Golovnya, V. Y., Klyucharev, A. P., Shilayev, B. A., and Shlyakhov, N. A., Sov. J. Nucl. Phys. 4, 547 (1967).Google Scholar
18Sharma, R. P., Rehn, L. E., Badlo, P. M., and Liu, J. Z., Phys. Rev. B 38, 9287 (1988).CrossRefGoogle Scholar
19Sharma, R. P., Rehn, L. E., Badlo, P. M., and Liu, J. Z., Phys. Rev. Lett. 62, 2869 (1989).CrossRefGoogle Scholar
20Barrett, J. H., Phys. Rev. B 3, 1527 (1971).CrossRefGoogle Scholar
21Narayan, J., Singh, R. K., and Budai, J. D., Appl. Phys. Lett, (to be published).Google Scholar
22Singh, R. K., Narayan, J., and Singh, A. K., J. Appl. Phys. 67, 4558 (1990).Google Scholar