Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T18:26:33.489Z Has data issue: false hasContentIssue false

Kinetics of formation of the pyrochlore and perovskite phases in sol-gel derived lead zirconate titanate powder

Published online by Cambridge University Press:  31 January 2011

V. S. Tiwari
Affiliation:
Crystal Growth Laboratory, Centre for Advanced Technology, Indore-452013, India
Arun Kumar
Affiliation:
Crystal Growth Laboratory, Centre for Advanced Technology, Indore-452013, India
V. K. Wadhawan
Affiliation:
Crystal Growth Laboratory, Centre for Advanced Technology, Indore-452013, India
Dhananjai Pandey
Affiliation:
Department of Physics, Banaras Hindu University, Varanasi-221005, India
Get access

Abstract

Lead zirconate titanate (PZT) powder is prepared by the sol-gel method. The formation of pyrochlore and perovskite phases is investigated by high temperature x-ray diffraction (XRD) and thermal analysis techniques. The pyrochlore phase first appears in x-ray amorphous form, and then gets converted to crystalline state on annealing in air. We show that vacuum annealing of the pyrolyzed amorphous PZT gel suppresses the formation of the crystalline pyrochlore phase. This, in turn, enhances the kinetics of conversion of pyrochlore to perovskite, such that a pyrochlore-free perovskite phase can be obtained by annealing at about 500 °C. On the other hand, if annealing is carried out in air, a crystalline pyrochlore phase is formed, which requires annealing temperatures higher than 600 °C for transformation to the perovskite phase. These observations are explained tentatively in terms of the oxygen stoichiometry of the two phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
2.Heartling, G. H., in Electronic Ceramics, edited by Levinson, L. M. (Marcel and Dekker, New York, 1988).Google Scholar
3.Kushide, K. and Takeuchi, H., Appl. Phys. Lett. 50, 1800 (1987).Google Scholar
4.Watanabe, S., Fujiu, T., and Fujii, T., Appl. Phys. Lett. 66, 1481 (1995).CrossRefGoogle Scholar
5.Srinivas, K. and Sayer, M., J. Appl. Phys. 64, 1484 (1980).Google Scholar
6.Patel, A. and Obhi, J. S., GEC J. Res. 12, 141 (1995).Google Scholar
7.Scott, J. F. and Carlos de Araujo, A. P., Science 246, 1400 (1989).Google Scholar
8.Lin, H., Wu, N. J., Geiger, F., Xie, K., and Ignatiev, A., Appl. Phys. Lett. 66, 1172 (1995).CrossRefGoogle Scholar
9.Al-Shareef, H. N., Kingnon, A. I., Chen, X., Bellur, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
10.Hu, H. and Krupanidhi, S. B., J. Mater. Res. 9, 1484 (1994).Google Scholar
11.Dey, S. K., Payne, D. A., and Budd, K. D., IEEE UFFC 35, 80 (1988).CrossRefGoogle Scholar
12.Yi, G., Wu, Z., and Syer, M., J. Appl. Phys. 64, 2717 (1988).Google Scholar
13.Dana, S. S., Etzold, K. F., and Clabes, J., J. Appl. Phys. 69, 4398 (1991).Google Scholar
14.Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).Google Scholar
15.Chen, S. Y. and Chen, I. W., J. Am. Ceram. Soc. 77, 2337 (1994).Google Scholar
16.Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
17.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
18.Kwok, C. K. and Desu, B. S., Appl. Phys. Lett. 60, 1430 (1992).Google Scholar
19.Lee, J., Safari, A., and Pfeffer, R. L., Appl. Phys. Lett. 61, 1643 (1992).Google Scholar
20.Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 9, 699 (1994).Google Scholar
21.Kidoh, H., Ogawa, T., Morimoto, A., and Shimizu, T., Appl. Phys. Lett. 58, 2911 (1991).Google Scholar
22.Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 11, 3039 (1992).Google Scholar
23.Majumder, S. B., Agrawal, D. C., Mohapatra, Y. N., and Kulkarni, V. N., Integrated Ferroelectrics 9, 271 (1995).CrossRefGoogle Scholar
24.Chen, K. and Mackenzie, J., in Better Ceramics Through Chemistry IV, edited by Zelinsky, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 663.Google Scholar
25.Bursill, L. A. and Brooks, K. G., J. Appl. Phys. 75, 4501 (1994).Google Scholar
26.Sengupta, S. S., Ma, L., Adler, D. L., and Payne, D. A., J. Mater. Res. 10, 1345 (1995).Google Scholar