Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T17:16:55.791Z Has data issue: false hasContentIssue false

Mechanisms of ductility improvement in L12 compounds

Published online by Cambridge University Press:  31 January 2011

Osamu Izumi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai, Japan
Takayuki Takasugi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai, Japan
Get access

Abstract

The present article first describes some characteristics of structure, chemistry, and electronic (bond) nature for grain boundaries in the A3B Li2-type intermetallic compounds. Next, the phenomenological aspects for the grain boundary brittleness of the Li2-type intermetallic compounds are reviewed with respect to the combination of the constituent atoms, the alloying effect, the stoichiometry effect, and a role of impurity or gaseous atoms. It is emphasized that the brittleness of grain boundaries in the intermetallic compounds is directly controlled by the atomistic and electronic structures at grain boundary regions. Based on these systematic investigations, it is suggested that the brittleness of the Li2-type intermetallic compounds can be manipulated by appropriate control of composition and the corresponding electrochemical bond environment at grain boundary planes and by control of test environment. Furthermore, some examples of the materials development are described.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pearson, W. B., Handbook of Lattice Spacings and Structures of Metals (Pergamon, New York, 1958, 1967), Vols. 1, 2.Google Scholar
2Stoloff, N. S. and Davies, R. G., Prog. Mater. Sci. 13, 1 (1966).CrossRefGoogle Scholar
3Vitek, V., Dislocations and Properties of Real Materials, edited by Loretto, M. H. (The Institute of Metals, London, 1985), p. 30.Google Scholar
4Westbrook, J. H., Intermetallic Compounds (Wiley, New York, 1967).Google Scholar
5Westbrook, J. H. and Wood, D. L., J. Inst. Met. 91, 175 (1962-1963).Google Scholar
6Stoloff, N. S. and Davies, R. G., Acta Metall. 12, 473 (1964).CrossRefGoogle Scholar
7Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scr. Metall. 19, 551 (1985).CrossRefGoogle Scholar
8Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. A 16, 441 (1985).CrossRefGoogle Scholar
9McMahon, C. J. Jr, and Vitek, V., Acta Metall. 27, 507 (1979).CrossRefGoogle Scholar
10Takasugi, T. and Izumi, O., Acta Metall. 31, 1187 (1983).CrossRefGoogle Scholar
11Takasugi, T. and Izumi, O., Acta Metall. 35, 823 (1987).CrossRefGoogle Scholar
12Farkas, D., Scr. Metall. 19, 467 (1985).CrossRefGoogle Scholar
13Frost, H. J., Acta Metall. 35, 519 (1987).CrossRefGoogle Scholar
14Farkas, D. and Rangarajan, V., Acta Metall. 35, 353 (1987).CrossRefGoogle Scholar
15Chen, S. P., Voter, A. F., and Srolovitz, D. J., Scr. Metall. 20, 1389 (1986).CrossRefGoogle Scholar
16Hiraga, K., Sasaki, G., and Hirabayashi, M. (privatecommunication, to be published).Google Scholar
17McLean, D., Grain Boundaries in Metals (Oxford U. P., Oxford, 1957), Chap. 1.Google Scholar
18Gelatt, C. D. Jr, Williams, A. R., and Moruzzi, V. L., Phys. Rev. B 27, 2005 (1983).CrossRefGoogle Scholar
19Miedema, A. R., J. Less Common Met. 46, 67 (1976).CrossRefGoogle Scholar
20Shao, J. and Machlin, E. S., J. Phys. Chem. Solids 44, 289 (1983).CrossRefGoogle Scholar
21Losch, W., Acta Metall. 27, 1885 (1979).CrossRefGoogle Scholar
22Briant, C. L. and Messmer, R. P., Philos. Mag. B 42, 569 (1980).CrossRefGoogle Scholar
23Messmer, R. P. and Briant, C. L., Acta Metall. 30, 457 (1982); 30 1811 (1982).CrossRefGoogle Scholar
24Hashimoto, H., Ishida, Y., Yamamoto, R., Doyama, M., Wakayama, S., and Fujuwara, T., Acta Metall. 32, 1 (1984); 32, 13 (1984); 32, 21 (1984).CrossRefGoogle Scholar
25Eberhart, M. E., Latanision, R. M., and Johnson, K. H., Acta Metall. 33, 1769 (1985).CrossRefGoogle Scholar
26Takasugi, T. and Izumi, O., Acta Metall. 33, 1247 (1985).CrossRefGoogle Scholar
27Miedema, A. R., Calphad 7, 51 (1983).CrossRefGoogle Scholar
28Taub, A. I., Briant, C. L., Huang, S. C., Chang, K.-M., and Jackson, M. R., Scr. Metall. 20, 129 (1986).CrossRefGoogle Scholar
29Taub, A. I. and Briant, C. L., Acta Metall. 35, 1597 (1987).CrossRefGoogle Scholar
30Takasugi, T. and Izumi, O., Acta Metall. 33, 39 (1985).CrossRefGoogle Scholar
31Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).CrossRefGoogle Scholar
32Liu, C. T., Metall. Trans. 4, 1743 (1973).CrossRefGoogle Scholar
33Liu, C. T., J. Nucl. Mater. 85–86, 907 (1979).CrossRefGoogle Scholar
34Liu, C. T., Int. Met. Rev. 29, 168 (1984).CrossRefGoogle Scholar
35Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).CrossRefGoogle Scholar
36Liu, Y., Takasugi, T., and Izumi, O., in the Collected Abstracts of the 1986 Fall Meeting of the Japan Institute of Metals, p. 155.Google Scholar
37Guard, R. W. and Westbrook, J. H., Trans. Metall. Soc. AIME 215, 807 (1959).Google Scholar
38Ochiai, S., Oya, Y., and Suzuki, T., Acta Metall. 32, 289 (1984).CrossRefGoogle Scholar
39Inoue, A., Tomioka, H., and Masumoto, T., Metall. Trans. A14, 1368 (1983).Google Scholar
40Chang, K. M., Huang, S. C., and Taub, A. I., in the Proceedings of the Materials Research Society (Elsevier, New York, 1984), Vol. 28, p. 401.Google Scholar
41Huang, S. C., Hall, E. L., Chang, K. M., and Laforce, R. P., Metall. Trans. A 17, 1685 (1986).CrossRefGoogle Scholar
42Masahashi, N., Takasugi, T., and Izumi, O., J. Mater. Sci. 22, 2599 (1987).CrossRefGoogle Scholar
43Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. A 19, 345 (1988).CrossRefGoogle Scholar
44Horton, J. A., Liu, C. T., and Sautella, M. L., Metall. Trans. A 18, 1265 (1987).CrossRefGoogle Scholar
45Liu, Y., Takasugi, T., and Izumi, O., Metall. Trans. A 17, 1433 (1986).CrossRefGoogle Scholar
46Aoki, K. and Izumi, O., Phys. Status Solidi A 32, 657 (1975).CrossRefGoogle Scholar
47Takasugi, T. and Izumi, O., Acta Metall. 33, 33 (1985).CrossRefGoogle Scholar
48Aoki, K. and Izumi, O., J. Jpn. Inst. Met. 43, 1190 (1979).CrossRefGoogle Scholar
49Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
50Taub, A. I., Huang, S. C., and Chang, K.-M., Metall. Trans. A 15, 399 (1984).CrossRefGoogle Scholar
51Takasugi, T., Masahashi, N., and Izumi, O., Acta Metall. 35, 381 (1987).CrossRefGoogle Scholar
52Masahashi, N., Doctoral dissertation, Tohoku University (1987).Google Scholar
53Liu, C. T. and White, C. L., Acta Metall. 35, 643 (1987).CrossRefGoogle Scholar
54Briant, C. L. and Huang, S. C., Metall. Trans. A 17, 2084 (1986).CrossRefGoogle Scholar
55White, C. L., Padgett, R. A., Liu, C. T., and Yalisove, S. M., Scr. Metall. 18, 1417 (1984).CrossRefGoogle Scholar
56Horton, J. A. and Miller, M. K., Acta Metall. 35, 133 (1987).CrossRefGoogle Scholar
57Takasugi, T., Masahashi, N., and Izumi, O., Scr. Metall. 20, 1317 (1986).CrossRefGoogle Scholar
58Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. (to be published).Google Scholar
59Schulson, E. M., Weihs, T. P., Viens, D. V., and Baker, I., Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
60Schulson, E. M., Weihs, T. P., Baker, I., Frost, H. J., and Horton, J. A., Acta Metall. 34, 1395 (1986).CrossRefGoogle Scholar
61Gupta, A. D., Smedskjaer, L. C., Legnini, D. G., and Siegel, R. W., Mater. Lett. 3, 457 (1985).Google Scholar
62Kuruvilla, A. K., Ashok, S., and Stoloff, N. S., in the Proceedings of the Third International Congress on Hydrogen in Metals (Pergamon, Paris, 1982), p. 629.Google Scholar
63Berkowitz, B. J. and Miller, C., Metall. Trans. A 11, 1877 (1980).CrossRefGoogle Scholar
64Kuruvilla, A. K. and Stoloff, N. S., Scr. Metall. 19, 83 (1985).CrossRefGoogle Scholar
65Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. A 19, 353 (1988).CrossRefGoogle Scholar
66Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. (to be published).Google Scholar
67Liu, C. T., White, C. L., and Lee, E. H., Scr. Metall. 19, 1247 (1985).CrossRefGoogle Scholar
68Taub, A. I., Chang, K.-M., and Liu, C. T., Scr. Metall. 20, 1613 (1986).CrossRefGoogle Scholar
69Liu, C. T. and White, C. L., Acta Metall. 35, 643 (1987).CrossRefGoogle Scholar
70Liu, C. T. and Stieger, J. O., Science 226, 636 (1984).CrossRefGoogle Scholar
71Liu, C. T., Int. Metall. Rev. 29, 168 (1984).CrossRefGoogle Scholar
72Takasugi, T., Liu, Y., and Izumi, O., in the Collected Abstracts of the Spring Meeting of Japan Institute of Metals, 1987, p. 295.Google Scholar
73Schulson, E. M. and Barker, D. R., Scr. Metall. 17, 519 (1983).CrossRefGoogle Scholar
74Masuda-Jindo, K. M., in the Proceedings of the Conference on Interface and Engineering-'87, Lake Placid, New York, 1987; Journal de Physique (to be published).Google Scholar
75Eberhart, M. E. and Vvedensky, D. D., Phys. Rev. Lett. 58, 61 (1987).CrossRefGoogle Scholar
76Chen, S. P., Voter, A. F., and Srolovitz, D. J., in Ref. 74.Google Scholar