Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T10:35:53.875Z Has data issue: false hasContentIssue false

Microprobe fluorescence spectroscopy evaluation of stress fields developed along a propagating crack in an Al2O3/CaO 6Al2O3ceramic composite

Published online by Cambridge University Press:  31 January 2011

O. Sbaizero
Affiliation:
Dipartimento di Ingegneria dei Materiali, University of Trieste, Via Valerio 2, 34127, Italy
S. Maschio
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, University of Udine, Via del Cotonificio 108, 33100 Italy
G. Pezzotti*
Affiliation:
Ceramic Physics Laboratory, Department of Materials, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606–8585, Japan
I. J. Davies
Affiliation:
Advanced Fibro-Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan
*
a)Address all correspondence to this author.pezzotti@chem.kit.ac.jp
Get access

Abstract

The fracture behavior upon stable crack propagation in bending was investigated for a ceramic matrix composite comprising 15 vol% of calcium hexaluminate (CaAl12O19 or “CA6”) in an Al2.O3 matrix and compared to the crack bridging stresses as measured by microprobe fluorescence spectroscopy. In addition, piezospectroscopy coefficients of -4.57 and -3.79 cm-1 GPa-1 were determined for the peaks located at 14488 and 14528 cm-1, respectively, for monolithic CA6. It was concluded that the macroscopic R-curve behavior of the composite could be predicted from microscopic bridging stress data and indicated microprobe fluorescence spectroscopy to be a significant experimental tool for the investigation of fracture micromechanisms in ceramic materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Raddatz, O., Schneider, G.A., Mackens, W., Voss, H., and Claussen, N., J. Eur. Ceram. Soc. 20, 2261 (2000).Google Scholar
2Pezzotti, G., Sbaizero, O., Sergo, V., Muraki, N., Maruyama, K., and Nishida, T., J. Am. Ceram. Soc. 81, 187 (1998).CrossRefGoogle Scholar
3Pezzotti, G., Sbaizero, O., Suenobu, H., and Nishida, T., J. Am. Ceram. Soc. 82, 1257 (1999).CrossRefGoogle Scholar
4Sbaizero, O. and Pezzotti, G., J. Eur. Ceram. Soc. 20, 1145 (2000).Google Scholar
5Pezzotti, G., J. Raman Spectrosc. 30, 867 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
6Cutler, R.A., Mayhew, R.J., Prettyman, K.M., and Virkar, A.V., J. Am. Ceram. Soc. 74, 179 (1991).Google Scholar
7Tani, S., Umebayashi, K., Kishi, K., and Nishijima, M., Am. Ceram. Soc. Bull. 65, 1311 (1986).Google Scholar
8Tsukuma, K. and Takahata, T., in Advanced Structural Ceramics, edited by Becker, P.F., Swain, M.V., and Soōmiya, S. (Mater. Res. Soc. Symp. Proc. 78, Pittsburgh, PA, 1987), p. 123.Google Scholar
9Chen, P.L. and Chen, I.W., J. Am. Ceram. Soc. 75, 2610 (1992).Google Scholar
10An, L. and Chan, H.M., J. Am. Ceram. Soc. 79, 3142 (1996).Google Scholar
11Criado, E., Pena, P., and Caballero, A., in Science of Ceramics 14, edited by D. Taylor (Institute of Ceramics, Shelton, United King-dom, 1988), p. 193.Google Scholar
12Nagaoka, T., Kanzaki, S., and Yamaoka, Y., J. Mater. Sci. Lett.9, 219 (1990).Google Scholar
13Brooksbank, D., J. Iron Steel Inst. 208, 495 (1970).Google Scholar
14Ma, Q. and Clarke, D.R., J. Am. Ceram. Soc. 76, 1433 (1993).Google Scholar
15Ma, Q. and Clarke, D.R., Acta Metall. Mater. 41, 1817 (1993).CrossRefGoogle Scholar
16He, J. and Clarke, D.R., J. Am. Ceram. Soc. 78, 1347 (1995).Google Scholar
17Nojima, T. and Nakai, O., J. Soc. Mater. Sci. Jpn. 42, 412 (1993).CrossRefGoogle Scholar
18Nishida, T., Hanaki, Y., Nojima, T., and Pezzotti, G., J. Am. Ceram. Soc. 78, 3113 (1995).CrossRefGoogle Scholar
19Nishida, T., Hanaki, Y., and Pezzotti, G., J. Am. Ceram. Soc. 77, 606 (1995).Google Scholar
20Maschio, S., Lucchini, E., and Sergo, V., J. Am. Ceram. Soc. 82, 3145 (1999).Google Scholar
21Tomaszewski, H., Boniecki, M., and Weglarz, H., J. Eur. Ceram. Soc. 20, 2569 (2000).CrossRefGoogle Scholar
22Kovar, D., Bennison, S.J., and Readey, M.J., Acta Mater. 48, 565 (2000).Google Scholar
23Fett, T., J. Am. Ceram. Soc. 78, 945 (1995).Google Scholar
24Irwin, G.R., Handbook of Physics (Springer-Verlag, Berlin, Germany, 1958), Vol. 6, p. 551.Google Scholar
25Becher, P.F., J. Am. Ceram. Soc. 74, 255 (1991).Google Scholar