Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T01:03:58.531Z Has data issue: false hasContentIssue false

Microstructural development of Si3N4–SiC–Y2O3 ceramics derived from polymeric precursors

Published online by Cambridge University Press:  31 January 2011

Yuji Iwamoto
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2-4-1 Mutsuno Atsuta-ku, Nagoya 456, Japan
Ko-ichi Kikuta
Affiliation:
National Industrial Research Institute of Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Shin-ichi Hirano
Affiliation:
Department of Applied Chemistry, School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-01, Japan
Get access

Extract

[Si–Y–O–C–N] amorphous powders were synthesized by the pyrolysis at 1000 °C in N2 of chemically modified perhydropolysilazane using n-decyl alcohol and yttrium tri-methoxide. [Si–Y–O–C–N] amorphous powders yielded a unique fibrous microstructure by heat treatment in N2 at 1800 °C. The fibrous microstructure was composed of β–Si3N4 whiskers of submicron in diameter and more than 10 μm in length. Fully dense Si3N4 –SiC–Y2O3 ceramics were also fabricated by heat treatment at 1800 °C followed by powder-vehicle hot pressing at 1700 °C. After these two-step processings, [Si–Y–O–C–N] amorphous powders yielded a unique fine-grained microstructure composed of submicron grains with high aspect ratio.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wynne, K. J. and Rice, R.W., Annu. Rev. Mater. Sci. 14, 297334 (1984).CrossRefGoogle Scholar
2.Seyferth, D. and Wiseman, G.H., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D.R. (Wiley-Interscience, New York, 1984), pp. 26562671.Google Scholar
3.Schwartz, K.B., Rowcliffe, D. J., Blum, Y.D., and Raine, R.M., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), pp. 265271.Google Scholar
4.Schmit, W. R., Sukumar, V., Hurley, W. J. Jr., Garcia, R., Doremus, R.H., and Interrante, L.V., J. Am. Ceram. Soc. 73 (8), 24122418 (1990).CrossRefGoogle Scholar
5.Funayama, O., Arai, M., Tashiro, Y., Aoki, H., Suzuki, T., Tamura, K., Kaya, H., Nishii, H., and Isoda, T., J. Ceram. Soc. Jpn. 98 (1), 104107 (1990).CrossRefGoogle Scholar
6.Yajima, S., Okamura, K., Hayashi, J., and Omori, M., Chem. Lett. (9), 931934 (1975).Google Scholar
7.Yajima, S., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59 (7–8), 324327 (1976).Google Scholar
8.West, R., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D.R. (WileyInterscience, New York, 1984), pp. 235244.Google Scholar
9.Paine, R. T. and Narula, C.K., Chem. Mater. 5, 269279 (1993).Google Scholar
10.Yajima, S., Iwai, T., Yamanaka, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16, 13491355 (1981).Google Scholar
11.Soraru, G.D., Ravagni, A., Maschio, R.D., and Arturan, G., J. Am. Ceram. Soc. 74 (9), 22202223 (1991).CrossRefGoogle Scholar
12.Soraru, G.D., Ravagni, A., and Campostrini, R., J. Eur. Ceram. Soc. 8, 2934 (1991).Google Scholar
13.Seyferth, D., Brodt, G., and Boury, B., J. Am. Ceram. Soc. 73 (7), 21312133 (1990).CrossRefGoogle Scholar
14.Schmit, W. R., Hurley, W. J. Jr., Doremus, R.H., Interrante, L.V., and Marchetti, P. S., in Advanced Composite Materials, edited by Sacks, M.D. (Ceram. Trans. 19, The American Ceramic Society, Westerville, OH, 1991), pp. 1925.Google Scholar
15.Seyferth, D. and Plenio, H., J. Mater. Sci. Lett. 15, 348349 (1996).CrossRefGoogle Scholar
16.Bill, J., Friess, M., Aldinger, F., and Riedel, R., in Better Ceramics Through Chemistry VI, edited by Cheetham, A.K., Brinker, C. J., Mecartney, M. L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 605615.Google Scholar
17.Bill, J. and Aldinger, F., Adv. Mater. 7 (9), 775787 (1995).Google Scholar
18.Reidel, R. and Dressler, W., Ceram. Int. 22, 233239 (1996).CrossRefGoogle Scholar
19.Funayama, O., Kato, T., Tashiro, Y., and Isoda, T., J. Am. Ceram. Soc. 76 (3), 717723 (1993).CrossRefGoogle Scholar
20.Funayama, O., Tashiro, Y., Aoki, T., and Isoda, T., J. Jpn. Ceram. Soc. 102 (10), 908912 (1994).Google Scholar
21.Iwamoto, Y., Matsubara, H., and Brook, R. J., in Ceramic Processing Science and Technology, edited by Hausner, H., Messing, G. L., and Hirano, S. (Ceram. Trans. 51, The American Ceramic Society, Westerville, OH, 1995), pp. 193197.Google Scholar
22.Niihara, K., Izaki, K., and Kawakami, T., J. Mater. Sci. Lett. 10, 112114 (1990).CrossRefGoogle Scholar
23.Sasaki, G., Nakase, H., Suganuma, K., Fujita, T., and Niihara, K., J. Jpn. Ceram. Soc. 100 (4), 536540 (1992).Google Scholar
24.Ukyo, Y., Kandori, T., and Wada, S., J. Jpn. Ceram. Soc. 101 (12), 536540 (1992).Google Scholar
25.Seyferth, D., Wiseman, G., and Prud'homme, C., J. Am. Ceram. Soc. 66 (1), C13 (1983).Google Scholar
26.Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, 5th ed. (JohnWiley & Sons, Inc., New York, 1991), Chaps. 3–4.Google Scholar
27.Evans, W. J. and Solleberger, M. S., J. Am. Chem. Soc. 108, 60956096 (1986).CrossRefGoogle Scholar
28.Blanchard, C.R. and Schwab, S. T., J. Am. Ceram. Soc. 77 (7), 17291739 (1994).Google Scholar
29.Saito, H., Hayashi, T., and Miura, K., J. Chem. Soc. Jpn., 13711377 (1981).CrossRefGoogle Scholar
30.Wang, M-J. and Wada, H., J. Mater. Sci. 25, 16901698 (1990).CrossRefGoogle Scholar
31.Hoffman, M. J. and Petzow, G., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I.W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), pp. 315.Google Scholar