Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:39:08.803Z Has data issue: false hasContentIssue false

Microstructural evolution and functional fatigue of a Ti–25Ta high-temperature shape memory alloy

Published online by Cambridge University Press:  08 August 2017

Hans Jürgen Maier*
Affiliation:
Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen 30823, Germany
Elvira Karsten
Affiliation:
Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen 30823, Germany
Alexander Paulsen
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Dennis Langenkämper
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Peer Decker
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Jan Frenzel
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Christoph Somsen
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Alfred Ludwig
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Gunther Eggeler
Affiliation:
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum 44780, Germany
Thomas Niendorf*
Affiliation:
Institut für Werkstofftechnik, Universität Kassel, Kassel 34125, Germany
*
a) Address all correspondence to these authors. e-mail: maier@iw.uni-hannover.de
Get access

Abstract

Titanium–tantalum based alloys can demonstrate a martensitic transformation well above 100 °C, which makes them attractive for shape memory applications at elevated temperatures. In addition, they provide for good workability and contain only reasonably priced constituents. The current study presents results from functional fatigue experiments on a binary Ti–25Ta high-temperature shape memory alloy. This material shows a martensitic transformation at about 350 °C along with a transformation strain of 2 pct at a bias stress of 100 MPa. The success of most of the envisaged applications will, however, hinge on the microstructural stability under thermomechanical loading. Thus, light and electron optical microscopy as well X-ray diffraction were used to uncover the mechanisms that dominate functional degradation in different temperature regimes. It is demonstrated the maximum test temperature is the key parameter that governs functional degradation in the thermomechanical fatigue tests. Specifically, ω-phase formation and local decomposition in Ti-rich and Ta-rich areas dominate when T max does not exceed ≈430 °C. As T max is increased, the detrimental phases start to dissolve and functional fatigue can be suppressed. However, when T max reaches ≈620 °C, structural fatigue sets in, and fatigue life is again deteriorated by oxygen-induced crack formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Contributing Editor: Yuntian Zhu

References

REFERENCES

Otsuka, K. and Ren, X.: Recent developments in the research of shape memory alloys. Intermetallics 7(5), 511 (1999).Google Scholar
Ma, J., Karaman, I., and Noebe, R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55(5), 257 (2010).CrossRefGoogle Scholar
Lindquist, P.G. and Wayman, C.M.: Shape memory and transformation behavior of martensitic Ti–Pd–Ni and Ti–Pt–Ni alloys. In Engineering Aspects of Shape Memory Alloys, Duerig, T.W., Melton, K.N., Stöckel, D., and Wayman, C.M., eds. (Butterworth-Heinemann, London, Boston, Singapore, Sydney, Toronto, Wellington, 1990); p. 58.Google Scholar
Van Humbeeck, J.: High temperature shape memory alloys. J. Eng. Mater. Technol. 121(1), 98 (1999).Google Scholar
Noebe, R., Gaydosh, D., Padula, S. II, Garg, A., Biles, T., Nathal, M., and Armstrong, W.D.: Properties and potential of two (Ni, Pt) Ti alloys for use as high-temperature actuator materials. Smart Mater. Struct. 5761, 364 (2005).Google Scholar
Atli, K.C., Karaman, I., and Noebe, R.D.: Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24Pd25 high-temperature shape memory alloy. Mater. Sci. Eng., A 613, 250 (2014).Google Scholar
Meng, X.L., Zheng, Y.F., Cai, W., and Zhao, L.C.: Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. J. Alloys Compd. 372(1–2), 180 (2004).CrossRefGoogle Scholar
Besseghini, S., Villa, E., and Tuissi, A.: Ni–Ti–Hf shape memory alloy: Effect of aging and thermal cycling. Mater. Sci. Eng., A 273, 390 (1999).Google Scholar
Saghaian, S.M., Karaca, H.E., Souri, M., Turabi, A.S., and Noebe, R.D.: Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater. Des. 101, 340 (2016).Google Scholar
Saghaian, S.M., Karaca, H.E., Tobe, H., Souri, M., Noebe, R., and Chumlyakov, Y.I.: Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater. 87, 128 (2015).Google Scholar
Canadinc, D., Trehern, W., Oscan, H., Hayrettin, C., Karakoc, O., Karaman, I., Sun, F., and Chaudhry, Z.: On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr. Mater. 135, 92 (2017).CrossRefGoogle Scholar
Buenconsejo, P.J.S., Kim, H.Y., Hosoda, H., and Miyazaki, S.: Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater. 57(4), 1068 (2009).Google Scholar
Zhang, J., Rynko, R., Frenzel, J., Somsen, C., and Eggeler, G.: Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int. J. Mater. Res. 105, 156 (2014).Google Scholar
Buenconsejo, P.J.S.: Development and characterization of Ti–Ni based and Ti–Ta based shape memory alloys for novel applications. Ph.D. thesis, University of Tsukuba, Japan, 2009.Google Scholar
Hickman, B.S.: The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 4, 554 (1969).Google Scholar
Murray, J.L.: The Ta–Ti (tantalum–titanium) system. Bull. Alloy Phase Diagrams 2(1), 62 (1981).Google Scholar
Niendorf, T., Krooß, P., Somsen, C., Rynko, R., Paulsen, A., Batyrshina, E., Frenzel, J., Eggeler, G., and Maier, H.J.: Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—The role of dislocation activity and chemical decomposition. Funct. Mater. Lett. 8, 1550062 (2015).Google Scholar
Niendorf, T., Krooß, P., Batyrsina, E., Paulsen, A., Motemani, Y., Ludwig, A., Buenconsejo, P., Frenzel, J., Eggeler, G., and Maier, H.J.: Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HTSMAs). Mater. Sci. Eng., A 620, 359 (2015).Google Scholar
Niendorf, T., Krooß, P., Batyrsina, E., Paulsen, A., Frenzel, J., Eggeler, G., and Maier, H.J.: On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys—A new concept for fatigue life extension. Funct. Mater. Lett. 7, 1450042 (2014).Google Scholar
Buenconsejo, P.J.S., Kim, H.Y., and Miyazaki, S.: Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr. Mater. 64, 1114 (2011).CrossRefGoogle Scholar
Rynko, R., Marquardt, A., Paulsen, A., Frenzel, J., Somsen, C., and Eggeler, G.: Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int. J. Mater. Res. 106, 331 (2015).Google Scholar
Kim, H.Y., Fukushima, T., Buenconsejo, P.J., Nam, T., and Miyazaki, S.: Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater. Sci. Eng., A 528, 7238 (2011).Google Scholar
Siegert, W., Neuking, K., Mertmann, M., and Eggeler, G.: First cycle shape memory effect in the ternary NiTiNb system. J. Phys. 112, 739 (2003).Google Scholar
Massalski, T.B., Okamato, H., Subramanian, P.R., and Kacprzak, L.: Phasen-Diagramm Ti–Ta, Binary Alloys Phase Diagrams (ASM International, Metals Park, Ohio, 1990).Google Scholar
Williams, J.C., Hickman, B.S., and Leslie, D.H.: The effect of ternary additions on the decomposition of metastable beta-phase Ti alloys. Metall. Trans. 2, 477 (1971).Google Scholar
Hickman, B.S.: Omega phase precipitation in alloys of titanium with transition metals. Trans. Metall. Soc. AIME 245, 1329 (1969).Google Scholar
Rynko, R.: Mikrostrukturelle Untersuchungen von thermisch und thermomechanisch induzierten Strukturbildungsprozessen in Ti–Ta Hochtemperatur-Formgedächtnislegierungen. Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany, 2015.Google Scholar
Albrecht, J., Duering, T., and Richter, D.: Verfahren zur Herstellung eines Bauteils aus einer Titanlegierung, sowie Bauteil und Verwendung des Bauteils. Europäische Patentanmeldung Patent Number 0062365, 7, 1982.Google Scholar
Atli, K.C., Karaman, I., Noebe, R.D., and Gaydosh, D.: The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Mater. Sci. Eng., A 560, 653 (2013).Google Scholar
Dadda, J., Maier, H.J., Karaman, I., and Chumlyakov, Y.: High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int. J. Mater. Res. 101, 1503 (2010).Google Scholar
Dadda, J., Maier, H.J., Karaman, I., and Chumlyakov, Y.I.: Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater. 57, 6123 (2009).Google Scholar
Grossmann, Ch., Frenzel, J., Sampath, V., Depka, T., and Eggeler, G.: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 40, 2530 (2009).CrossRefGoogle Scholar
Al-Zain, Y., Sato, Y., Kim, H.Y., Hosoda, H., Nam, T.H., and Miyazaki, S.: Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Mater. 60, 2437 (2012).Google Scholar
Peters, M., Hemptenmacher, J., Kumpfert, J., and Leyens, C.: Titan und Titanlegierungen: Struktur, Gefüge, Eigenschaften. In Titan und Titanlegierungen, Peters, M. and Leyens, C., eds. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002); p. 1.Google Scholar
Boyer, R., Welsch, G., and Collings, E.W.: Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, OH, 1994).Google Scholar
Bieler, T.R., Trevino, R.M., and Zeng, L.: Alloys: Titanium. In Bassani, F., Liedl, G.L., and Wyder, P., eds., Encyclopedia of Condensed Matter Physics (Elsevier, 2005); p. 65.CrossRefGoogle Scholar
Vojtovich, R.F. and Golovko, Eh.I.: Oxidation of Ti–Ta and Ti–Nb alloys. Izv. Akad. Nauk SSSR, Met. 1, 222 (1979).Google Scholar