Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-18T12:21:37.741Z Has data issue: false hasContentIssue false

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: Phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

Published online by Cambridge University Press:  07 June 2012

Ram Devanathan*
Affiliation:
Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
Nagesh Idupulapati
Affiliation:
Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
Michel Dupuis
Affiliation:
Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
*
a)Address all correspondence to this author. e-mail: ram.devanathan@pnnl.gov
Get access

Abstract

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol, and hydronium in phenylated sulfonated poly(ether ether ketone ketone) (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. In Ph-SPEEKK, the average pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower relative to the corresponding properties in Nafion at comparable hydration levels. The aromatic carbon backbone of Ph-SPEEKK is more rigid and less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation in Ph-SPEEKK occurs at a hydration level (λ) of ∼8 H2O/SO3. At λ = 20, water, methanol, and hydronium diffusion coefficients were 1.4 × 10−5, 0.6 × 10−5, and 0.2 × 10−5 cm2/s, respectively. For λ > 20, wide pores develop leading to an increase in methanol crossover and ion transport.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ren, X., Wilson, M.S., and Gottesfeld, S.: High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 143, L12 (1996).CrossRefGoogle Scholar
2.Kamrudin, S.K., Achmad, F., and Daud, W.R.W.: Overview of the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 34, 6902 (2009).CrossRefGoogle Scholar
3.Heinzel, A. and Barragan, V.M.: A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70 (1999).CrossRefGoogle Scholar
4.Mauritz, K.A. and Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104, 4535 (2004).CrossRefGoogle ScholarPubMed
5.Neburchilov, V., Martin, J., Wang, H., and Zhang, J.: A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221 (2007).CrossRefGoogle Scholar
6.Deluca, N.W. and Elabd, Y.A.: Polymer electrolyte membranes for the direct methanol fuel cell: A review. J. Polym. Sci., Part B: Polym. Phys. 44, 2201 (2006).CrossRefGoogle Scholar
7.Kreuer, K.D.: On the development of proton conducting polymer membranes for technological applications. Solid State Ionics 97, 1 (1997).CrossRefGoogle Scholar
8.Kreuer, K.D.: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29 (2001).CrossRefGoogle Scholar
9.Devanathan, R.: Recent developments in proton exchange membranes for fuel cells. Energy Environ. Sci. 1, 101 (2008).CrossRefGoogle Scholar
10.Smitha, B., Sridhar, S., and Khan, A.A.: Solid polymer electrolyte membranes for fuel cell applications—A review. J. Membr. Sci. 259, 10 (2005).CrossRefGoogle Scholar
11.Li, Q., He, R., Jensen, J.O., and Bjerrum, N.J.: Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 15, 4896 (2003).CrossRefGoogle Scholar
12.Alberti, G., Casciola, M., Massinelli, L., and Bauer, B.: Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J. Membr. Sci. 185, 73 (2001).CrossRefGoogle Scholar
13.Hogarth, W.H.J., Diniz da Costa, J.C., and Lu, G.Q.: Solid acid membranes for high temperature (>140 °C) proton exchange membrane fuel cells. J. Power Sources 142, 223 (2005).CrossRefGoogle Scholar
14.Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., and McGrath, J.E.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587 (2004).CrossRefGoogle ScholarPubMed
15.Kopitzke, R.W., Linkous, C.A., Anderson, H.R., and Nelson, G.L.: Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes. J. Electrochem. Soc. 147, 1677 (2000).CrossRefGoogle Scholar
16.Yang, B. and Manthiram, A.: Comparison of the small angle x-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells. J. Power Sources 153, 29 (2006).CrossRefGoogle Scholar
17.Yang, B. and Manthiram, A.: Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 6, A229 (2003).CrossRefGoogle Scholar
18.Muthulakshmi, R.T.S., Choudhary, V., and Varma, I.K.: Sulphonated poly(ether ether ketone): Synthesis and characterisation. J. Mater. Sci. 40, 629 (2005).CrossRefGoogle Scholar
19.Fu, Y., Manthiram, A., and Guiver, M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 8, 1386 (2006).CrossRefGoogle Scholar
20.Knauth, P., Sgreccia, E., Donnadio, A., Casciola, M., and Di Vona, M.L.: Water activity coefficient and proton mobility in hydrated acidic polymers. J. Electrochem. Soc. 158, B159 (2011).CrossRefGoogle Scholar
21.Liu, B., Robertson, G.P., Kim, D-S., Guiver, M.D., Hu, W., and Jiang, Z.: Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes. Macromolecules 40, 1934 (2007).CrossRefGoogle Scholar
22.Liu, B., Kim, Y.S., Hu, W., Robertson, G.P., Pivovar, B.S., and Guiver, M.D.: Homopolymer-like sulfonated phenyl- and diphenyl-poly(arylene ether ketone)s for fuel cell applications. J. Power Sources 185, 899 (2008).CrossRefGoogle Scholar
23.Elliott, J.A., Hanna, S., Elliott, A.M.S., and Cooley, G.E.: Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys. 1, 4855 (1999).CrossRefGoogle Scholar
24.Vishnyakov, A. and Neimark, A.V.: Molecular simulation study of Nafion membrane solvation in water and methanol. J. Phys. Chem. B 104, 4471 (2000).CrossRefGoogle Scholar
25.Spohr, E., Commer, P., and Kornyshev, A.A.: Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B 106, 10560 (2002).CrossRefGoogle Scholar
26.Jang, S.S., Molinero, V., Cagin, T., and Goddard, W.A. III: Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: Effect of monomeric sequence. J. Phys. Chem. B 108, 3149 (2004).CrossRefGoogle Scholar
27.Urata, S., Irisawa, J., Takada, A., Shinoda, W., Tsuzuki, S., and Mikami, M.: Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. J. Phys. Chem. B 109, 4269 (2005).CrossRefGoogle ScholarPubMed
28.Venkatnathan, A., Devanathan, R., and Dupuis, M.: Atomistic simulations of hydrated Nafion and temperature effects on hydronium ion mobility. J. Phys. Chem. B 111, 7234 (2007).CrossRefGoogle ScholarPubMed
29.Devanathan, R., Venkatnathan, A., and Dupuis, M.: Atomistic simulation of Nafion membrane. I Effect of hydration on membrane nanostructure. J. Phys. Chem. B 111, 8069 (2007).CrossRefGoogle ScholarPubMed
30.Devanathan, R., Venkatnathan, A., and Dupuis, M.: Atomistic simulation of Nafion membrane. 2. Dynamics of water molecules and hydronium ions. J. Phys. Chem. B 111, 8069 (2007).CrossRefGoogle ScholarPubMed
31.Cui, S., Liu, J., Selvan, M.E., Keffer, D.J., Edwards, B.J., and Steele, W.V.: A molecular dynamics study of a Nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B 111, 2208 (2007).CrossRefGoogle ScholarPubMed
32.Cui, S., Liu, J., Selvan, M.E., Paddison, S.J., Keffer, D.J., and Edwards, B.J.: Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. J. Phys. Chem. B 112, 13273 (2008).CrossRefGoogle ScholarPubMed
33.Liu, J., Suraweera, N., Keffer, D.J., Cui, S., and Paddison, S.J.: On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes. J. Phys. Chem. C 114, 11279 (2010).CrossRefGoogle Scholar
34.Hristov, I.H., Paddison, S.J., and Paul, R.: Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer. J. Phys. Chem. B 112, 2937 (2008).CrossRefGoogle ScholarPubMed
35.Karo, J., Aabloo, A., Thomas, J.O., and Brandell, D.: Molecular dynamics modeling of proton transport in Nafion and Hyflon nanostructures. J. Phys. Chem. B 114, 6056 (2010).CrossRefGoogle ScholarPubMed
36.Knox, C.K. and Voth, G.A.: Probing selected morphological models of hydrated Nafion using large-scale molecular dynamics simulations J. Phys. Chem. B 114, 3205 (2010).CrossRefGoogle ScholarPubMed
37.Devanathan, R., Venkatnathan, A., Rousseau, R., Dupuis, M., Frigato, T., Gu, W., and Helms, V.: Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane. J. Phys. Chem. B 114, 13681 (2010).CrossRefGoogle ScholarPubMed
38.Feng, S. and Voth, G.A.: Proton solvation and transport in hydrated Nafion. J. Phys. Chem. B 115, 5903 (2011).CrossRefGoogle ScholarPubMed
39.Brunello, G., Lee, S.G., Jang, S.S., and Qi, Y.: A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content. J. Renewable Sustainable Energy 1, 033101 (2009).CrossRefGoogle Scholar
40.Brunello, G.F., Mateker, W.R., Lee, S.G., Choi, J.I., and Jang, S.S.: Effect of temperature on structure and water transport of hydrated sulfonated poly(ether ether ketone): A molecular dynamics approach. J. Renewable Sustainable Energy 3, 043111 (2011).CrossRefGoogle Scholar
41.Komarov, P.V., Veselov, I.N., Chu, P.P., Khalatur, P.G., and Khokhlov, A.R.: Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone). Chem. Phys. Lett. 487, 291 (2010).CrossRefGoogle Scholar
42.Mahajan, C.V. and Ganesan, V.: Atomistic simulations of structure of solvated sulfonated poly(ether ether ketone) membranes and their comparisons to Nafion: I. Nanophase segregation and hydrophilic domains. J. Phys. Chem. B 114, 8357 (2010).CrossRefGoogle ScholarPubMed
43.Mahajan, C.V. and Ganesan, V.: Atomistic simulations of structure of solvated sulfonated poly(ether ether ketone) membranes and their comparisons to Nafion: II. Structure and transport properties of water, hydronium ions, and methanol. J. Phys. Chem. B 114, 8367 (2010).CrossRefGoogle ScholarPubMed
44.Lins, R.D., Devanathan, R., and Dupuis, M.: Modeling of nanophase structural dynamics of phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes as a function of hydration. J. Phys. Chem. B 115, 1817 (2011).CrossRefGoogle ScholarPubMed
45.Astill, T.D.: Factors influencing electrochemical properties and performance of hydrocarbon based ionomer PEMFC catalyst layers. Ph.D. Thesis, Simon Fraser University, Burnaby, Canada, 2008.CrossRefGoogle Scholar
46.Mayo, S.L., Olafson, B.D., and Goddard, W.A.: DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 94, 8897 (1990).CrossRefGoogle Scholar
47.Jang, S.S., Blanco, M., Goddard, W.A. III, Caldwell, G., and Ross, R.B.: The source of helicity in perfluorinated N-alkanes. Macromolecules. 36, 5331 (2003).CrossRefGoogle Scholar
48.Levitt, M., Hirshberg, M., Sharon, R., Laidig, K.E., and Daggett, V.: Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J. Phys. Chem. B 25, 5051 (1997).CrossRefGoogle Scholar
49.Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
50.Todorov, I.T., Smith, W., Trachenko, K., and Dove, M.T.: DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911 (2006).CrossRefGoogle Scholar
51.Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
52.Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
53.Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R.: Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
54.Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).CrossRefGoogle ScholarPubMed
55.Rintoul, M.D. and Torquato, S.: Precise determination of the critical threshold and exponents in a 3D continuum percolation model. J. Phys. A: Math. Gen. 30, L585 (1997).CrossRefGoogle Scholar
56.Bhattacharya, S. and Gubbins, K.E.: Fast method for computing pore size distributions of model materials. Langmuir 22, 7726 (2006).CrossRefGoogle ScholarPubMed
57.Kappel, F. and Kuntsevich, A.: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193 (2000).CrossRefGoogle Scholar
58.Devanathan, R. and Dupuis, M.: Insight from molecular modelling: Does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes? Phys. Chem. Chem. Phys. (2012, in press).CrossRefGoogle ScholarPubMed
59.Mecheri, B., D’Epifanio, A., Traversa, E., and Licoccia, S.: Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. J. Power Sources 178, 554 (2008).CrossRefGoogle Scholar