Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T23:24:47.816Z Has data issue: false hasContentIssue false

Monolithic nanoporous copper by dealloying Mn–Cu

Published online by Cambridge University Press:  03 March 2011

J.R. Hayes*
Affiliation:
Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, California 94546
A.M. Hodge
Affiliation:
Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, California 94546
J. Biener
Affiliation:
Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, California 94546
A.V. Hamza
Affiliation:
Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, California 94546
K. Sieradzki
Affiliation:
Arizona State University, Department of Chemistry and Materials Science, Tempe, Arizona 85287-6106
*
a) Address all correspondence to this author. e-mail: JRHayes@llnl.gov
Get access

Abstract

Monolithic nanoporous copper was synthesized by dealloying Mn0.7Cu0.3 by two distinct methods: potentiostatically driven dealloying and free corrosion. Both the ligament size and morphology were found to be highly dependent on the dealloying methods and conditions. For example, ligaments from 16 nm–125 nm were obtained by dealloying either electrochemically or by free corrosion, respectively. Optimization of the starting Mn–Cu alloy microstructure allowed us to synthesize uniform porous structures; but we found cracking to be unavoidable. Despite the presence of unavoidable defects, the nanoporous material still exhibits higher than expected yield strength.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pan, Z., Zavalin, A., Ueda, A., Guo, M., Groza, M., Burger, A., Mu, R., Morgan, S.H.: Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates. Appl. Spectrosc. 59, 782 (2005).CrossRefGoogle ScholarPubMed
2.Kuncicky, D.M., Christesen, S.D., Velev, O.D.: Role of the micro- and nanostructure in the performance of surface-enhanced Raman scattering substrates assembled from gold nanoparticles. Appl. Spectrosc. 59, 401 (2005).CrossRefGoogle ScholarPubMed
3.Williamson, T.L., Guo, X.Y., Zukoski, A., Sood, A., Diaz, D.J., Bohn, P.W.: Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J. Phys. Chem. B 109, 20186 (2005).CrossRefGoogle Scholar
4.Smith, A.J., Trimm, D.L.: The preparation of skeletal catalysts. Annu. Rev. Mater. Res. 35, 127 (2005).Google Scholar
5.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H.: Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 023401 (2005).Google Scholar
6.Li, R., Sieradzki, K.: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992).CrossRefGoogle ScholarPubMed
7.Newman, R.C., Corcoran, S.G., Erlebacher, J., Aziz, M.J., Sieradzki, K.: Alloy corrosion. MRS Bull. 24, 24 (1999).CrossRefGoogle Scholar
8.Erlebacher, J., Sieradzki, K.: Pattern formation during dealloying. Scripta Mater. 49, 991 (2003).Google Scholar
9.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).CrossRefGoogle ScholarPubMed
10.Forty, A.J., Durkin, P.: A micro-morphological study of the dissolution of silver-gold alloys in nitric-acid. Philos. Mag. A 42, 295 (1980).CrossRefGoogle Scholar
11.Sieradzki, K., Kim, J.S., Cole, A.T., Newman, R.C.: The relationship between dealloying and transgranular stress-corrosion cracking of Cu-Zn and Cu-Al alloys. J. Electrochem. Soc. 134, 1635 (1987).CrossRefGoogle Scholar
12.Erlebacher, J.: An atomistic description of dealloying—Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).Google Scholar
13.Sieradzki, K., Corderman, R.R., Shukla, K., Newman, R.C.: Computer-simulations of corrosion—selective dissolution of binary-alloys. Philos. Mag. A 59, 713 (1989).CrossRefGoogle Scholar
14.Mellor, J.R., Coville, N.J., Sofianos, A.C., Copperthwaite, R.G.: Raney copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability. Appl. Catal., A 164, 171 (1997).Google Scholar
15.Mellor, J.R., Coville, N.J., Durbach, S.H., Copperthwaite, R.G.: Acid leached Raney copper catalysts for the water-gas shift reaction. Appl. Catal., A 171, 273 (1998).CrossRefGoogle Scholar
16.Keir, D.S., Pryor, M.J.: The dealloying of copper-manganese alloys. J. Electrochem. Soc. 127, 2138 (1980).CrossRefGoogle Scholar
17.Min, U.S., Li, J.C.M.: The microstructure and dealloying kinetics of a Cu-Mn alloy. J. Mater. Res. 9, 2878 (1994).Google Scholar
18.Pryor, M.J., Fister, J.C.: The mechanism of dealloying of copper solid-solutions and intermetallic phases. J. Electrochem. Soc. 131, 1230 (1984).CrossRefGoogle Scholar
19.Thornton, K., Akaiwa, N., Voorhees, P.W.: Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution. Acta Mater. 52, 1365 (2004).CrossRefGoogle Scholar
20.Smith, A.J., Tran, T., Wainwright, M.S.: Kinetics and mechanism of the preparation of Raney (R) copper. J. Appl. Electrochem. 29, 1085 (1999).Google Scholar
21.Raney, M. Method of preparing catalytic material. U.S. Patent No. 1,563,587 (1925).Google Scholar
22.Raney, M. Method of producing finely divided nickel. U.S. Patent No. 1,628,190 (1927).Google Scholar
23.ASM Handbook, Vol. 3: Alloy Phase Diagrams, edited by Baker, H. (ASM International, Materials Park, OH, 1992) p. 172.Google Scholar
24.Dursun, A., Pugh, D.V., Corcoran, S.G.: Dealloying of Ag-Au alloys in halide-containing electrolytes—Affect on critical potential and pore size. J. Electrochem. Soc. 150, B355 (2003).CrossRefGoogle Scholar
25.Ding, Y., Kim, Y.J., Erlebacher, J.: Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).Google Scholar
26.Belmont, O., Faivre, C., Bellet, D., Brechet, Y.: About the origin and the mechanisms involved in the cracking of highly porous silicon layers under capillary stresses. Thin Solid Films 276, 219 (1996).CrossRefGoogle Scholar
27.Dean, R.S., Long, J.R., Graham, T.R., Potter, E.V., Hayes, E.T.: The copper-manganese equilibrium system. Transactions of the ASM 34, 443 (1945).Google Scholar
28.Greer, J.R., Nix, W.D.: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A. 80, 1625 (2005).CrossRefGoogle Scholar
29.Greer, J.R., Oliver, W.C., Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
30.Patel, J.R., Cohen, M.: Criterion for the action of applied stress in the martensitic transformation. Acta Mater. 1, 531 (1953).CrossRefGoogle Scholar
31.Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997) p. 209.Google Scholar
32.Wang, Y.M., Chen, M.W., Zhou, F.H., Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).CrossRefGoogle Scholar