Hostname: page-component-6d856f89d9-26vmc Total loading time: 0 Render date: 2024-07-16T07:36:17.688Z Has data issue: false hasContentIssue false

Natural-abundance 13C dynamic nuclear polarization experiments on chemical vapor deposited diamond film

Published online by Cambridge University Press:  31 January 2011

Herman Lock
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523–0002
Gary E. Maciel
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523–0002
Curtis E. Johnson
Affiliation:
Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division, China Lake, California 93555–6001
Get access

Abstract

13C cross-polarization (CP) and direct-polarization (DP) spectra of an 83 mg sample of a chemical vapor deposited (CVD) diamond film (combined from 12 separate depositions) have been obtained via dynamic nuclear polarization (DNP) combined with magic-angle spinning (MAS). With DNP, the presence of unpaired electron spins in the sample, measured to be 2 × 1018 spins/g, provides a way to enhance the 13C or the “residual” 1H signal by irradiating the sample with microwaves at or near the electron spin resonance (ESR) Larmor frequency; the interactions between the unpaired electrons and protons or 13C spins lead to a transfer of polarization from the electron spin system to the 1H and/or 13C spin systems. No signal for sp2 hybridized carbons could be observed. The DNP-CP-MAS spectrum, obtained in an experiment in which the DNP-enhanced proton polarization is in turn transferred via CP to the 13C spin system, differs significantly from the DNP-DP-MAS spectrum, in which the 13C spins are directly enhanced.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).Google Scholar
2Spear, K.E., J. Am. Ceram. Soc. 72, 171 (1989).Google Scholar
3Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
4McNamara, K.M. and Gleason, K.K., J. Appl. Phys. 71, 2884 (1992).Google Scholar
5McNamara, K. M., Gleason, K. K., and Geis, M.W., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1989), p. 207.Google Scholar
6McNamara, K. M., Levy, D. H., Gleason, K. K., and Robinson, C. J., Appl. Phys. Lett. 60, 580 (1992).Google Scholar
7McNamara, K. M. and Gleason, K. K., NATO-ASI Series B: Physics 266, 541 (1991).Google Scholar
8Duijvestijn, M. J., Lugt, C. van der, Smidt, J., Wind, R. A., Zilm, K. W., and Staplin, D. C., Chem. Phys. Lett. 102, 25 (1983).Google Scholar
9Henrichs, P.M., Cofield, M.L., Young, R.H., and Hewitt, J.M., J. Magn. Reson. 58, 85 (1984).Google Scholar
10Abragam, A., The Principles of Nuclear Magnetism (Oxford University Press, London, 1961).Google Scholar
11Wind, R. A., Duijvestijn, M.J., Lugt, C. van der, Manenschijn, A., and Vriend, J., Progr. NMR Spectrosc. 17, 33 (1985).Google Scholar
12Andrew, E. R., Prog. Nucl. Magn. Reson. Spectrosc. 8, Chap. 1 (1972).Google Scholar
13Weimer, W.A., Cerio, F.M., and Johnson, C.E., J. Mater. Res. 6, 2134 (1991).Google Scholar
14Chang, C.P., Flamm, D. L., Ibbotson, D.E., and Mucha, J.A., J. Appl. Phys. 63, 1744 (1988).Google Scholar
15Wind, R.A., Anthonio, F.E., Duijvestijn, M.J., Smidt, J., Trommel, J., and Vette, G.M.C. de, J. Magn. Reson. 52, 424 (1983).Google Scholar
16Maciel, G.E., Bronnimann, C.E., and Hawkins, B.L., Adv. Magn. Reson. 14, 125 (1990).Google Scholar
17Bronnimann, C.E., Hawkins, B.L., Zhang, M., and Maciel, G.E., Anal. Chem. 60, 1745 (1988).Google Scholar
18A much sharper resonance, with a Tle of 0.3 ms, has been observed on this sample at 40 GHz, using a microwave field of much lower intensity (0.2 μ W) at the University of Denver ESR Laboratory. The unpaired electrons with such a large Tle value should not contribute substantially to the solid-state DNP results obtained in this study.Google Scholar
19Johnson, C.E., Weimer, W.A., and Harris, D.C., Mater. Res. Bull. XXIV, 1127 (1989).Google Scholar
20Watanabe, I. and Sugata, K., Jpn. J. Appl. Phys. 27, 1808 (1988).Google Scholar
21Frye, J.S., Concepts in Magn. Reson. 1, 27 (1989).Google Scholar
22Lowe, I.J. and Tse, D., Phys. Rev. 166, 279 (1968).Google Scholar
23This estimate is based on the calculation of the overall 13C spin-lattice relaxation behavior, assuming that this relaxation is governed by the unpaired electrons and a Tle on the order of 500 μS.Google Scholar
24Blumberg, W. E., Phys. Rev. 119, 79 (1960).Google Scholar
25Schaefer, J. and Stejskal, E. O., J. Am. Chem. Soc. 98, 1031 (1976).Google Scholar
26Hartmann, S. R. and Hahn, E. L., Phys. Rev. 128, 2042 (1992).Google Scholar
27Edamatsu, K., Takata, Y., Yokoyama, T., Seki, K., Tohnan, M., Okada, T., and Ohta, T., Jpn. J. Appl. Phys. 30, 1073 (1991).Google Scholar