Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-14T23:44:11.419Z Has data issue: false hasContentIssue false

Preparation, structure, and magnetic properties of cobalt nanoparticles in carbon fibers

Published online by Cambridge University Press:  31 January 2011

I. Bashmakov
Affiliation:
Departments of Chemistry and Physics, Belarus State University, F. Skarina av. 4, 220080 Minsk, Belarus
V. Dorosinez
Affiliation:
Departments of Chemistry and Physics, Belarus State University, F. Skarina av. 4, 220080 Minsk, Belarus
M. Lukashevich
Affiliation:
Departments of Chemistry and Physics, Belarus State University, F. Skarina av. 4, 220080 Minsk, Belarus
A. Mazanik
Affiliation:
Departments of Chemistry and Physics, Belarus State University, F. Skarina av. 4, 220080 Minsk, Belarus
T. Tihonova
Affiliation:
Departments of Chemistry and Physics, Belarus State University, F. Skarina av. 4, 220080 Minsk, Belarus
T. Zabel
Affiliation:
II. Physical Institute, University of Koeln, Zuelpicherstrasse 77, 50937, Koeln, Germany
B. Wiedenhorst
Affiliation:
II. Physical Institute, University of Koeln, Zuelpicherstrasse 77, 50937, Koeln, Germany
H. Micklitz
Affiliation:
II. Physical Institute, University of Koeln, Zuelpicherstrasse 77, 50937, Koeln, Germany
Get access

Abstract

Samples of Co clusters embedded in a carbon fiber matrix have been prepared using a heat-treatment method of cellulose fibers with ion-absorbed cobalt cations. Depending on the heat-treatment temperature used, different cluster sizes have been obtained, ranging from superparamagnetic clusters (average size 10 nm) to ferromagnetic nanoparticles (size between 30 and 200 nm). The formation of graphite planes surrounding the nanoparticles has been observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Billas, I.M.L., Chatelain, A., and Heer, W.A., Science 265, 1682 (1994).CrossRefGoogle Scholar
2Xiao, J.Q., Jing, J.S., and Chien, C.L., Phys. Rev. Lett. 68, 3745 (1992).CrossRefGoogle Scholar
3Rubin, S. and Micklitz, H., in Materials Science Forum, edited by Fiorani, D. and Magini, M. (Trans. Tech. Publ. Ltd., Zurich, Swit-zerland, 1997), Vols. 235–238, p. 711.Google Scholar
4Helman, J.S. and Abeles, B., Phys. Rev. Lett. 37, 1429 (1976).CrossRefGoogle Scholar
5Holdenried, M. and Micklitz, H., Eur. Phys. J. B 13, 205 (2000).CrossRefGoogle Scholar
6Berkowitz, A.E., Phys. Rev. Lett. 68, 3745 (1992).CrossRefGoogle Scholar
7Naudon, A., Babonneay, D., Petroff, D., and Vaures, A., Thin. Solid. Films 319, 81 (1998).CrossRefGoogle Scholar
8Santos, A., Ardisson, J.D., Nambourgi, E.B., and Macedo, W.A.A., J. Magn. Mater. 177–181, 247 (1998).CrossRefGoogle Scholar
9Weitzel, B., Schreyer, A., and Micklitz, H., Europhys. Lett. 12, 123 (1990).CrossRefGoogle Scholar
10Cellulose and cellulose derivatives, edited by Bikales, N. and Segal, L. (Wiley-Interscience, New York, 1971).Google Scholar
11Kuriyama, K. and Dresselhaus, M.S., J. Mater. Res. 7, 940 (1992).CrossRefGoogle Scholar
12Lin, X.M., Sorensen, C.M., Klabunde, K.J., and Hajipanayis, G.C., J. Mater. Res. 14, 1542 (1999).CrossRefGoogle Scholar