Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T11:44:54.143Z Has data issue: false hasContentIssue false

Rapid sol–gel synthesis of nanodiamond aerogel

Published online by Cambridge University Press:  01 December 2014

Sandeep Manandhar
Affiliation:
Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
Paden B. Roder
Affiliation:
Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
Jennifer L. Hanson
Affiliation:
Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
Matthew Lim
Affiliation:
Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
Bennett E. Smith
Affiliation:
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
Austin Mann
Affiliation:
Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
Peter J. Pauzauskie*
Affiliation:
Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA; and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, Washington 99354, USA
*
a)Address all correspondence to this author. e-mail: peterpz@uw.edu
Get access

Abstract

The rapid sol–gel synthesis of macroscopic quantities of nanodiamond aerogel (NDAG) is reported at standard temperature and pressure using acid-catalyzed covalent crosslinking of air-oxidized detonation nanodiamond (DND) nanocrystals. Acetonitrile acts as a polar, aprotic solvent both to form a colloidal dispersion of DND particles and to conduct acid-catalyzed polycondensation reactions between resorcinol and formaldehyde (RF) small molecule precursors. Several characterization techniques show that nanodiamond grains are connected via covalent bonding with RF molecules to form a porous, three-dimensional network. Solvent exchange into liquid carbon dioxide and subsequent supercritical drying of NDAGs are used to recover low-density (151 mg/cm3), three-dimensional monolithic aerogels that exhibit surface areas in excess of 589 m2/g. The large accessible pore volume from the rapidly synthesized, macroscopic NDAG materials suggests a range of potential applications in catalysis, sensing, energy storage, as well as inert excipients for small-molecule pharmaceuticals.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11 (2012).Google Scholar
Fu, C-C., Lee, H-Y., Chen, K., Lim, T-S., Wu, H-Y., Lin, P-K., Wei, P-K., Tsao, P-H., Chang, H-C., and Fann, W.: Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 104(3), 727 (2007).CrossRefGoogle ScholarPubMed
Kim, H-J., Zhang, K., Moore, L., and Ho, D.: Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8, 29983005 (2014).Google Scholar
Wang, Q., Plylahan, N., Shelke, M.V., Devarapalli, R.R., Li, M.S., Subramanian, P., Djenizian, T., Boukherroub, R., and Szunerits, S.: Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 68, 175 (2014).Google Scholar
Shenderova, O., Panich, A.M., Moseenkov, S., Hens, S.C., Kuznetsov, V., and Vieth, H.M.: Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies. J. Phys. Chem. C 115(39), 19005 (2011).Google Scholar
Mohan, N., Tzeng, Y-K., Yang, L., Chen, Y-Y., Hui, Y.Y., Fang, C-Y., and Chang, H-C.: Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv. Mater. 22(7), 843 (2010).Google Scholar
Yu, S.J., Kang, M.W., Chang, H.C., Chen, K.M., and Yu, Y.C.: Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127(50), 17604 (2005).Google Scholar
Chang, Y.R., Lee, H.Y., Chen, K., Chang, C.C., Tsai, D.S., Fu, C.C., Lim, T.S., Tzeng, Y.K., Fang, C.Y., Han, C.C., Chang, H.C., and Fann, W.: Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3(5), 284 (2008).Google Scholar
Neugart, F., Zappe, A., Jelezko, F., Tietz, C., Boudou, J.P., Krueger, A., and Wrachtrup, J.: Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7(12), 3588 (2007).Google Scholar
Zhu, D., Zhang, L.H., Ruther, R.E., and Hamers, R.J.: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12(9), 836 (2013).Google Scholar
Kim, K.D., Dey, N.K., Seo, H.O., Kim, Y.D., Lim, D.C., and Lee, M.: Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition. Appl. Catal., A 408(1–2), 148 (2011).CrossRefGoogle Scholar
Vlasov, I.I., Shiryaev, A.A., Rendler, T., Steinert, S., Lee, S-Y., Antonov, D., Voros, M., Jelezko, F., Fisenko, A.V., Semjonova, L.F., Biskupek, J., Kaiser, U., Lebedev, O.I., Sildos, I., Hemmer, P.R., Konov, V.I., Gali, A., and Wrachtrup, J.: Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9(1), 54 (2014).Google Scholar
Chang, H.C., Chen, K.W., and Kwok, S.: Nanodiamond as a possible carrier of extended red emission. Astrophys. J. 639(2), L63 (2006).Google Scholar
Ustinova, G.K.: Production of anomalous Xe in nanodiamond in chondrites during the last supernova explosion predating the origin of the solar system. Geochem. Int. 49(6), 555 (2011).CrossRefGoogle Scholar
Jones, A.P.: The mineralogy of cosmic dust: Astromineralogy. Eur. J. Mineral. 19(6), 771 (2007).CrossRefGoogle Scholar
Korobov, M.V., Avramenko, N.V., Bogachev, A.G., Rozhkova, N.N., and Ōsawa, E.: Nanophase of water in nano-diamond gel. J. Phys. Chem. C 111(20), 7330 (2007).Google Scholar
Pauzauskie, P.J., Crowhurst, J.C., Worsley, M.A., Laurence, T.A., Kilcoyne, A.L.D., Wang, Y., Willey, T.M., Visbeck, K.S., Fakra, S.C., Evans, W.J., Zaug, J.M., and Satcher, J.H. Jr.: Synthesis and characterization of a nanocrystalline diamond aerogel. Proc. Natl. Acad. Sci. U.S.A. 108(21), 8550 (2011).Google Scholar
Mandal, M. and Landskron, K.: Synthetic chemistry with periodic mesostructures at high pressure. Acc. Chem. Res. 46(11), 2536 (2013).Google Scholar
Brownlee, D., Tsou, P., Aleon, J., Alexander, C.M.O., Araki, T., Bajt, S., Baratta, G.A., Bastien, R., Bland, P., Bleuet, P., Borg, J., Bradley, J.P., Brearley, A., Brenker, F., Brennan, S., Bridges, J.C., Browning, N.D., Brucato, J.R., Bullock, E., Burchell, M.J., Busemann, H., Butterworth, A., Chaussidon, M., Cheuvront, A., Chi, M.F., Cintala, M.J., Clark, B.C., Clemett, S.J., Cody, G., Colangeli, L., Cooper, G., Cordier, P., Daghlian, C., Dai, Z.R., D'Hendecourt, L., Djouadi, Z., Dominguez, G., Duxbury, T., Dworkin, J.P., Ebel, D.S., Economou, T.E., Fakra, S., Fairey, S.A.J., Fallon, S., Ferrini, G., Ferroir, T., Fleckenstein, H., Floss, C., Flynn, G., Franchi, I.A., Fries, M., Gainsforth, Z., Gallien, J.P., Genge, M., Gilles, M.K., Gillet, P., Gilmour, J., Glavin, D.P., Gounelle, M., Grady, M.M., Graham, G.A., Grant, P.G., Green, S.F., Grossemy, F., Grossman, L., Grossman, J.N., Guan, Y., Hagiya, K., Harvey, R., Heck, P., Herzog, G.F., Hoppe, P., Horz, F., Huth, J., Hutcheon, I.D., Ignatyev, K., Ishii, H., Ito, M., Jacob, D., Jacobsen, C., Jacobsen, S., Jones, S., Joswiak, D., Jurewicz, A., Kearsley, A.T., Keller, L.P., Khodja, H., Kilcoyne, A.L.D., Kissel, J., Krot, A., Langenhorst, F., Lanzirotti, A., Le, L., Leshin, L.A., Leitner, J., Lemelle, L., Leroux, H., Liu, M.C., Luening, K., Lyon, I., MacPherson, G., Marcus, M.A., Marhas, K., Marty, B., Matrajt, G., McKeegan, K., Meibom, A., Mennella, V., Messenger, K., Messenger, S., Mikouchi, T., Mostefaoui, S., Nakamura, T., Nakano, T., Newville, M., Nittler, L.R., Ohnishi, I., Ohsumi, K., Okudaira, K., Papanastassiou, D.A., Palma, R., Palumbo, M.E., Pepin, R.O., Perkins, D., Perronnet, M., Pianetta, P., Rao, W., Rietmeijer, F.J.M., Robert, F., Rost, D., Rotundi, A., Ryan, R., Sandford, S.A., Schwandt, C.S., See, T.H., Schlutter, D., Sheffield-Parker, J., Simionovici, A., Simon, S., Sitnitsky, I., Snead, C.J., Spencer, M.K., Stadermann, F.J., Steele, A., Stephan, T., Stroud, R., Susini, J., Sutton, S.R., Suzuki, Y., Taheri, M., Taylor, S., Teslich, N., Tomeoka, K., Tomioka, N., Toppani, A., Trigo-Rodriguez, J.M., Troadec, D., Tsuchiyama, A., Tuzzolino, A.J., Tyliszczak, T., Uesugi, K., Velbel, M., Vellenga, J., Vicenzi, E., Vincze, L., Warren, J., Weber, I., Weisberg, M., Westphal, A.J., Wirick, S., Wooden, D., Wopenka, B., Wozniakiewicz, P., Wright, I., Yabuta, H., Yano, H., Young, E.D., Zare, R.N., Zega, T., Ziegler, K., Zimmerman, L., Zinner, E., and Zolensky, M.: Comet 81P/Wild 2 under a microscope. Science 314(5806), 1711 (2006).Google Scholar
Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S.O., and Gogotsi, Y.: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635 (2006).Google Scholar
Kruger, A., Liang, Y., Jarre, G., and Stegk, J.: Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16(24), 2322 (2006).Google Scholar
Gaebel, T., Bradac, C., Chen, J., Say, J.M., Brown, L., Hemmer, P., and Rabeau, J.R.: Size-reduction of nanodiamonds via air oxidation. Diamond Relat. Mater. 21(0), 28 (2012).Google Scholar
Yusuf, S., Krahenbuhl, M., Haskins, B., and Hartman, M.: Improving neutron activation analysis accuracy for the measurement of gold in the characterization of heterogeneous catalysts using a TRIGA reactor. J. Radioanal. Nucl. Chem. 296(1), 23 (2013).Google Scholar
Soete, D., Gijbels, R., and Hoste, J.: Neutron Activation Analysis (Wiley-Interscience, London and New York, 1972).Google Scholar
Mulik, S., Sotiriou-Leventis, C., and Leventis, N.: Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 19(25), 6138 (2007).Google Scholar
Mitev, D.P., Townsend, A.T., Paull, B., and Nesterenko, P.N.: Direct sector field ICP-MS determination of metal impurities in detonation nanodiamond. Carbon 60(0), 326 (2013).Google Scholar
Ji, S., Jiang, T., Xu, K., and Li, S.: FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 133(4), 231 (1998).Google Scholar
Jiang, T. and Xu, K.: FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33(12), 1663 (1995).Google Scholar
Kuznetsov, V.L., Aleksandrov, M.N., Zagoruiko, I.V., Chuvilin, A.L., Moroz, E.M., Kolomiichuk, V.N., Likholobov, V.A., Brylyakov, P.M., and Sakovitch, G.V.: Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29(4–5), 665 (1991).Google Scholar
Yeap, W.S., Tan, Y.Y., and Loh, K.P.: Using detonation nanodiamond for the specific capture of glycoproteins. Anal. Chem. 80(12), 4659 (2008).Google Scholar
Lambert, J.B., Shurvell, H.F., and Cooks, R.G.: Introduction to Organic Spectroscopy, 1st ed. (Macmillan, New York, 1987).Google Scholar
Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T., and Umeno, M.: Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition. Diamond Relat. Mater. 10(3–7), 561 (2001).Google Scholar
Lin, C. and Ritter, J.A.: Effect of synthesis pH on the structure of carbon xerogels. Carbon 35(9), 1271 (1997).CrossRefGoogle Scholar
Cotet, L.C., Danciu, V., Cosoveanu, V., Popescu, I.C., Anna, R., and Molins, E.: Synthesis of meso- and macroporous carbon aerogels. Rev. Roum. Chim. 52(11), 1077 (2007).Google Scholar
Song, M.S., Nahm, S., and Oh, Y.J.: Preparation and electrochemical properties of carbon cryogel for supercapacitor. J. Korean Ceram. Soc. 45(11), 662 (2008).Google Scholar