Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T09:28:08.626Z Has data issue: false hasContentIssue false

Setting up a nanolab inside a transmission electron microscope for two-dimensional materials research

Published online by Cambridge University Press:  19 October 2015

Yuting Shen
Affiliation:
SEU–FEI Nano–Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
Litao Sun*
Affiliation:
SEU–FEI Nano–Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
*
a)Address all correspondence to this author. e-mail: slt@seu.edu.cn
Get access

Abstract

Two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, and molybdenum sulfide (MoS2), have attracted considerable interest from the academia and industry because of their extraordinary properties. With the remarkable development of transmission electron microscope (TEM), nanolabs can be established inside the TEM to simulate a real environment by introducing external fields, such as electron irradiation, thermal excitation, electrical field, and mechanical force, into the system. In consequence, besides static structural characterization, in situ TEM can also realize dynamic observation of the evolution in structures and properties of 2D materials. This extension promises an enormous potential for manipulating and engineering 2D materials at the atomic scale with desired structures and properties for future applications. In this study, we review the recent progress of in situ electron microscopy studies of 2D materials, including atomic resolution characterization, in situ growth, nanofabrication, and property characterization.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Eric A. Stach

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).CrossRefGoogle ScholarPubMed
Geim, A.K.: Graphene: Status and prospects. Science 324(5934), 1530 (2009).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Fal'ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K.: A roadmap for graphene. Nature 490(7419), 192 (2012).CrossRefGoogle ScholarPubMed
Han, W-Q., Wu, L., Zhu, Y., Watanabe, K., and Taniguchi, T.: Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93, 223103 (2008).CrossRefGoogle Scholar
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., and Zhang, H.: Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093 (2011).CrossRefGoogle ScholarPubMed
Xu, M., Liang, T., Shi, M., and Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766 (2013).CrossRefGoogle ScholarPubMed
Freitag, B., Kujawa, S., Mul, P.M., Ringnalda, J., and Tiemeijer, P.C.: Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102(3), 209 (2005).CrossRefGoogle ScholarPubMed
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., and Urban, K.: Electron microscopy image enhanced. Nature 392(6678), 768 (1998).CrossRefGoogle Scholar
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J., Doole, R.C., Hetherington, C.J., Kirkland, A.I., and Sawada, H.: A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103(1), 7 (2005).CrossRefGoogle ScholarPubMed
Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C-H., Crommie, M.F., Cohen, M.L., Louie, S.G., and Zettl, A.: Graphene at the edge: Stability and dynamics. Science 323(5922), 1705 (2009).CrossRefGoogle ScholarPubMed
Koskinen, P., Malola, S., and Häkkinen, H.: Evidence for graphene edges beyond zigzag and armchair. Phys. Rev. B. 80, 073401 (2009).CrossRefGoogle Scholar
Warner, J.H., Ruemmeli, M.H., Bachmatiuk, A., and Buechner, B.: Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 4(3), 1299 (2010).CrossRefGoogle ScholarPubMed
Lehtinen, O., Kurasch, S., Krasheninnikov, A.V., and Kaiser, U.: Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat. Commun. 4, 2098 (2013).CrossRefGoogle ScholarPubMed
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., and Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582 (2008).CrossRefGoogle ScholarPubMed
Warner, J.H., Margine, E.R., Mukai, M., Robertson, A.W., Giustino, F., and Kirkland, A.I.: Dislocation-driven deformations in graphene. Science 337(6091), 209 (2012).CrossRefGoogle ScholarPubMed
Lin, J., Cretu, O., Zhou, W., Suenaga, K., Prasai, D., Bolotin, K.I., Cuong, N.T., Otani, M., Okada, S., Lupini, A.R., Idrobo, J.C., Caudel, D., Burger, A., Ghimire, N.J., Yan, J., Mandrus, D.G., Pennycook, S.J., and Pantelides, S.T.: Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9(6), 436 (2014).CrossRefGoogle ScholarPubMed
Liu, X., Xu, T., Wu, X., Zhang, Z., Yu, J., Qiu, H., Hong, J-H., Jin, C-H., Li, J-X., Wang, X-R., Sun, L-T., and Guo, W.: Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013).CrossRefGoogle ScholarPubMed
Ziegler, A., Graafsma, H., Zhang, X., and Frenken, J.W.M.: In-situ Materials Characterization: Across Spatia and Temporal Scales (Springer, Dordrecht, Netherlands, 2014).CrossRefGoogle Scholar
Barwick, B., Park, H.S., Kwon, O-H., Baskin, J.S., and Zewail, A.H.: 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322(5905), 1227 (2008).CrossRefGoogle ScholarPubMed
Carbone, F., Kwon, O-H., and Zewail, A.H.: Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325(5937), 181 (2009).CrossRefGoogle ScholarPubMed
Zewail, A.H.: Four-dimensional electron microscopy. Science 328(5975), 187 (2010).CrossRefGoogle ScholarPubMed
Lorenz, U.J. and Zewail, A.H.: Observing liquid flow in nanotubes by 4D electron microscopy. Science 344(6191), 1496 (2014).CrossRefGoogle ScholarPubMed
van der Veen, R.M., Kwon, O.H., Tissot, A., Hauser, A., and Zewail, A.H.: Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nat. Chem. 5(5), 395 (2013).CrossRefGoogle ScholarPubMed
Robertson, A.W., Allen, C.S., Wu, Y.A., He, K., Olivier, J., Neethling, J., Kirkland, A.I., and Warner, J.H.: Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144 (2012).CrossRefGoogle ScholarPubMed
Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., and Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011).CrossRefGoogle ScholarPubMed
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B.I., Idrobo, J.C., Ajayan, P.M., and Lou, J.: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013).CrossRefGoogle ScholarPubMed
Berkdemir, A., Gutierrez, H.R., Botello-Mendez, A.R., Perea-Lopez, N., Elias, A.L., Chia, C-I., Wang, B., Crespi, V.H., Lopez-Urias, F., Charlier, J-C., Terrones, H., and Terrones, M.: Identification of individual and few layers of WS using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).CrossRefGoogle Scholar
Bachmatiuk, A., Abelin, R.F., Quang, H.T., Trzebicka, B., Eckert, J., and Rummeli, M.H.: Chemical vapor deposition of twisted bilayer and few-layer MoSe2 over SiOx substrates. Nanotechnology 25(36), 365603 (2014).CrossRefGoogle Scholar
Alem, N., Erni, R., Kisielowski, C., Rossell, M.D., Gannett, W., and Zettl, A.: Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).CrossRefGoogle Scholar
Jin, C., Lin, F., Suenaga, K., and Iijima, S.: Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).CrossRefGoogle ScholarPubMed
Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D.A., Ruemmeli, M.H., Opitz, J., Cuniberti, G., Lee, J-S., and Meyyappan, M.: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).CrossRefGoogle Scholar
Komsa, H-P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., and Krasheninnikov, A.V.: Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).CrossRefGoogle ScholarPubMed
Bjorkman, T., Kurasch, S., Lehtinen, O., Kotakoski, J., Yazyev, O.V., Srivastava, A., Skakalova, V., Smet, J.H., Kaiser, U., and Krasheninnikov, A.V.: Defects in bilayer silica and graphene: Common trends in diverse hexagonal two-dimensional systems. Sci. Rep. 3, 3482 (2013).CrossRefGoogle ScholarPubMed
Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., and Meyer, J.C.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011).CrossRefGoogle ScholarPubMed
Gibb, A.L., Alem, N., Chen, J.H., Erickson, K.J., Ciston, J., Gautam, A., Linck, M., and Zettl, A.: Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135(18), 6758 (2013).CrossRefGoogle ScholarPubMed
Cretu, O., Lin, Y.C., and Suenaga, K.: Evidence for active atomic defects in monolayer hexagonal boron nitride: A new mechanism of plasticity in two-dimensional materials. Nano Lett. 14(2), 1064 (2014).CrossRefGoogle ScholarPubMed
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J., and Kaiser, U.: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9(7), 2683 (2009).CrossRefGoogle ScholarPubMed
Komsa, H-P., Kurasch, S., Lehtinen, O., Kaiser, U., and Krasheninnikov, A.V.: From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B. 88, 035301 (2013).CrossRefGoogle Scholar
Qiu, H., Xu, T., Wang, Z., Ren, W., Nan, H., Ni, Z., Chen, Q., Yuan, S., Miao, F., Song, F., Long, G., Shi, Y., Sun, L., Wang, J., and Wang, X.: Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).CrossRefGoogle ScholarPubMed
Grantab, R., Shenoy, V.B., and Ruoff, R.S.: Anomalous strength characteristics of Tilt grain boundaries in graphene. Science 330(6006), 946 (2010).CrossRefGoogle ScholarPubMed
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., and Muller, D.A.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389 (2011).CrossRefGoogle ScholarPubMed
Tsen, A.W., Brown, L., Levendorf, M.P., Ghahari, F., Huang, P.Y., Havener, R.W., Ruiz-Vargas, C.S., Muller, D.A., Kim, P., and Park, J.: Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336(6085), 1143 (2012).CrossRefGoogle ScholarPubMed
Warner, J.H., Mukai, M., and Kirkland, A.I.: Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano 6(6), 5680 (2012).CrossRefGoogle ScholarPubMed
Cong, C., Li, K., Zhang, X.X., and Yu, T.: Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci. Rep. 3, 1195 (2013).CrossRefGoogle ScholarPubMed
Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35(6), 399 (2004).CrossRefGoogle ScholarPubMed
Banhart, F.: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62(8), 1181 (1999).CrossRefGoogle Scholar
Meyer, J.C., Eder, F., Kurasch, S., Skakalova, V., Kotakoski, J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov, A.V., and Kaiser, U.: Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).CrossRefGoogle ScholarPubMed
Robertson, A.W. and Warner, J.H.: Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale 5(10), 4079 (2013).CrossRefGoogle ScholarPubMed
Kotakoski, J., Mangler, C., and Meyer, J.C.: Imaging atomic-level random walk of a point defect in graphene. Nat. Commun. 5, 3991 (2014).CrossRefGoogle ScholarPubMed
Chen, J-H., Li, L., Cullen, W.G., Williams, E.D., and Fuhrer, M.S.: Tunable Kondo effect in graphene with defects. Nat. Phys. 7(7), 535 (2011).CrossRefGoogle Scholar
Li, L., Reich, S., and Robertson, J.: Defect energies of graphite: Density-functional calculations. Phys. Rev. B. 72, 184109 (2005).CrossRefGoogle Scholar
Russo, C.J. and Golovchenko, J.A.: Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl. Acad. Sci. U. S. A. 109(16), 5953 (2012).CrossRefGoogle ScholarPubMed
Robertson, A.W., Lee, G.D., He, K., Yoon, E., Kirkland, A.I., and Warner, J.H.: Stability and dynamics of the tetravacancy in graphene. Nano Lett. 14(3), 1634 (2014).CrossRefGoogle ScholarPubMed
Hjort, M. and Stafstrom, S.: Modeling vacancies in graphite via the Huckel method. Phys. Rev. B. 61(20), 14089 (2000).CrossRefGoogle Scholar
Kim, Y., Ihm, J., Yoon, E., and Lee, G.D.: Dynamics and stability of divacancy defects in graphene. Phys. Rev. B. 84, 075445 (2011).CrossRefGoogle Scholar
Robertson, A.W., He, K., Kirkland, A.I., and Warner, J.H.: Inflating graphene with atomic scale blisters. Nano Lett. 14(2), 908 (2014).CrossRefGoogle ScholarPubMed
Robertson, A.W., Montanari, B., He, K., Kim, J., Allen, C.S., Wu, Y.A., Olivier, J., Neethling, J., Harrison, N., Kirkland, A.I., and Warner, J.H.: Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13(4), 1468 (2013).CrossRefGoogle ScholarPubMed
Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschloegl, U., Yang, W., and Zhang, X.X.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12(1), 141 (2012).CrossRefGoogle ScholarPubMed
Liu, Y. and Yakobson, B.I.: Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10(6), 2178 (2010).CrossRefGoogle ScholarPubMed
Malola, S., Häkkinen, H., and Koskinen, P.: Structural, chemical, and dynamical trends in graphene grain boundaries. Phys. Rev. B. 81, 165447 (2010).CrossRefGoogle Scholar
Yazyev, O.V. and Louie, S.G.: Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B. 81, 195420 (2010).CrossRefGoogle Scholar
Yazyev, O.V. and Louie, S.G.: Electronic transport in polycrystalline graphene. Nat. Mater. 9(10), 806 (2010).CrossRefGoogle ScholarPubMed
An, J., Voelkl, E., Suk, J.W., Li, X., Magnuson, C.W., Fu, L., Tiemeijer, P., Bischoff, M., Freitag, B., Popova, E., and Ruoff, R.S.: Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene. ACS Nano 5(4), 2433 (2011).CrossRefGoogle ScholarPubMed
Kim, K., Lee, Z., Regan, W., Kisielowski, C., Crommie, M.F., and Zettl, A.: Grain boundary mapping in polycrystalline graphene. ACS Nano. 5(3), 2142 (2011).CrossRefGoogle ScholarPubMed
Robertson, A.W., Bachmatiuk, A., Wu, Y.A., Schaeffel, F., Rellinghaus, B., Buechner, B., Ruemmeli, M.H., and Warner, J.H.: Atomic structure of interconnected few-layer graphene domains. ACS Nano. 5(8), 6610 (2011).CrossRefGoogle ScholarPubMed
Kurasch, S., Kotakoski, J., Lehtinen, O., Skákalová, V., Smet, J., Krill, C.E., Krasheninnikov, A.V., and Kaiser, U.: Atom-by-atom observation of grain boundary migration in graphene. Nano Lett. 12(6), 3168 (2012).CrossRefGoogle ScholarPubMed
Klein, D.J.: Graphitic polymer strips with edge states. Chem. Phys. Lett. 217(3), 261 (1994).CrossRefGoogle Scholar
Kotakoski, J., Santos-Cottin, D., and Krasheninnikov, A.V.: Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects. ACS Nano 6(1), 671 (2012).CrossRefGoogle ScholarPubMed
Koskinen, P., Malola, S., and Häkkinen, H.: Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008).CrossRefGoogle ScholarPubMed
Kim, K., Coh, S., Kisielowski, C., Crommie, M.F., Louie, S.G., Cohen, M.L., and Zettl, A.: Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013).CrossRefGoogle ScholarPubMed
Warner, J.H., Ruemmeli, M.H., Ge, L., Gemming, T., Montanari, B., Harrison, N.M., Buechner, B., and Briggs, G.A.D.: Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 4(8), 500 (2009).CrossRefGoogle ScholarPubMed
Kawai, T., Miyamoto, Y., Sugino, O., and Koga, Y.: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B. 62(24), R16349 (2000).CrossRefGoogle Scholar
He, K., Lee, G.D., Robertson, A.W., Yoon, E., and Warner, J.H.: Hydrogen-free graphene edges. Nat. Commun. 5, 3040 (2014).CrossRefGoogle ScholarPubMed
Liu, Z., Suenaga, K., Harris, P.J.F., and Iijima, S.: Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009).CrossRefGoogle ScholarPubMed
Westenfelder, B., Meyer, J.C., Biskupek, J., Kurasch, S., Scholz, F., Krill, C.E. III, and Kaiser, U.: Transformations of carbon adsorbates on graphene substrates under extreme heat. Nano Lett. 11(12), 5123 (2011).CrossRefGoogle ScholarPubMed
Watanabe, K., Taniguchi, T., and Kanda, H.: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404 (2004).CrossRefGoogle ScholarPubMed
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., and Pennycook, S.J.: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571 (2010).CrossRefGoogle ScholarPubMed
Zobelli, A., Gloter, A., Ewels, C.P., Seifert, G., and Colliex, C.: Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. B. 75, 245402 (2007).CrossRefGoogle Scholar
Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., and van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B. 76, 073103 (2007).CrossRefGoogle Scholar
Brivio, J., Alexander, D.T.L., and Kis, A.: Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11(12), 5148 (2011).CrossRefGoogle ScholarPubMed
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle ScholarPubMed
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C-Y., Galli, G., and Wang, F.: Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10(4), 1271 (2010).CrossRefGoogle ScholarPubMed
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., and Idrobo, J.C.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615 (2013).CrossRefGoogle ScholarPubMed
Lee, G.D., Wang, C.Z., Yoon, E., Hwang, N.M., Kim, D.Y., and Ho, K.M.: Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 95, 205501 (2005).CrossRefGoogle ScholarPubMed
Rodriguez-Manzo, J.A., Pham-Huu, C., and Banhart, F.: Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano. 5(2), 1529 (2011).CrossRefGoogle ScholarPubMed
He, L., Xu, T., Sun, J., Yin, K., Xie, X., Ding, L., Xiu, H., and Sun, L.: Investment casting of carbon tubular structures. Carbon 50(8), 2845 (2012).CrossRefGoogle Scholar
Barreiro, A., Börrnert, F., Avdoshenko, S.M., Rellinghaus, B., Cuniberti, G., Rümmeli, M.H., and Vandersypen, L.M.K.: Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. Sci. Rep. 3, 1115 (2013).CrossRefGoogle Scholar
Liu, Z., Lin, Y.C., Lu, C.C., Yeh, C.H., Chiu, P.W., Iijima, S., and Suenaga, K.: In-situ observation of step-edge in-plane growth of graphene in a STEM. Nat. Commun. 5, 4055 (2014).CrossRefGoogle ScholarPubMed
Zhao, J., Deng, Q., Bachmatiuk, A., Sandeep, G., Popov, A., Eckert, J., and Ruemmeli, M.H.: Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343(6176), 1228 (2014).CrossRefGoogle ScholarPubMed
Romdhane, F.B., Bjoerkman, T., Rodriguez-Manzo, J.A., Cretu, O., Krasheninnikov, A.V., and Banhart, F.: In situ growth of cellular two-dimensional silicon oxide on metal substrates. ACS Nano 7(6), 5175 (2013).CrossRefGoogle ScholarPubMed
Ben Romdhane, F., Björkman, T., Krasheninnikov, A.V., and Banhart, F.: Solid-state growth of one- and two-dimensional silica structures on metal surfaces. J. Phys. Chem. C 118(36), 21001 (2014).CrossRefGoogle Scholar
Gan, Y., Sun, L., and Banhart, F.: One- and two-dimensional diffusion of metal atoms in graphene. Small 4(5), 587 (2008).CrossRefGoogle ScholarPubMed
Wang, H., Li, K., Cheng, Y., Wang, Q., Yao, Y., Schwingenschlogl, U., Zhang, X., and Yang, W.: Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy. Nanoscale 4(9), 2920 (2012).CrossRefGoogle Scholar
Rodriguez-Manzo, J.A., Cretu, O., and Banhart, F.: Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano. 4(6), 3422 (2010).CrossRefGoogle ScholarPubMed
Cretu, O., Krasheninnikov, A.V., Rodriguez-Manzo, J.A., Sun, L., Nieminen, R.M., and Banhart, F.: Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010).CrossRefGoogle ScholarPubMed
He, Z., He, K., Robertson, A.W., Kirkland, A.I., Kim, D., Ihm, J., Yoon, E., Lee, G-D., and Warner, J.H.: Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14(7), 3766 (2014).CrossRefGoogle ScholarPubMed
Zhou, W., Kapetanakis, M.D., Prange, M.P., Pantelides, S.T., Pennycook, S.J., and Idrobo, J-C.: Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 109, 206803 (2012).CrossRefGoogle ScholarPubMed
Lee, J., Zhou, W., Pennycook, S.J., Idrobo, J.C., and Pantelides, S.T.: Direct visualization of reversible dynamics in a Si(6) cluster embedded in a graphene pore. Nat. Commun. 4, 1650 (2013).CrossRefGoogle Scholar
Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykko, P., and Nieminen, R.M.: Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009).CrossRefGoogle ScholarPubMed
Wang, W.L., Santos, E.J.G., Jiang, B., Cubuk, E.D., Ophus, C., Centeno, A., Pesquera, A., Zurutuza, A., Ciston, J., Westervelt, R., and Kaxiras, E.: Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 14(2), 450 (2014).CrossRefGoogle ScholarPubMed
Wei, X., Wang, M-S., Bando, Y., and Golberg, D.: Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes.ACS Nano. 5(4), 2916 (2011).CrossRefGoogle ScholarPubMed
Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., and Dekker, C.: Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2(8), 537 (2003).CrossRefGoogle ScholarPubMed
Xu, T., Yin, K., Xie, X., He, L., Wang, B., and Sun, L.: Size-dependent evolution of graphene nanopores under thermal excitation. Small 8(22), 3422 (2012).CrossRefGoogle ScholarPubMed
Kim, M.J., McNally, B., Murata, K., and Meller, A.: Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18(20), 205302 (2007).CrossRefGoogle Scholar
Xu, T., Xie, X., Yin, K., Sun, J., He, L., and Sun, L.: Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small 10(9), 1724 (2014).CrossRefGoogle ScholarPubMed
Wu, S., Cao, F., Zheng, H., Sheng, H., Liu, C., Liu, Y., Zhao, D., and Wang, J.: Fabrication of faceted nanopores in magnesium. Appl. Phys. Lett. 103(24), 243101 (2013).CrossRefGoogle Scholar
Zheng, H., Liu, Y., Cao, F., Wu, S., Jia, S., Cao, A., Zhao, D., and Wang, J.: Electron beam-assisted healing of nanopores in magnesium alloys. Sci. Rep. 3, 1920 (2013).CrossRefGoogle ScholarPubMed
Song, B., Schneider, G.F., Xu, Q., Pandraud, G., Dekker, C., and Zandbergen, H.: Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11(6), 2247 (2011).CrossRefGoogle ScholarPubMed
Krasheninnikov, A.V. and Banhart, F.: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6(10), 723 (2007).CrossRefGoogle ScholarPubMed
Chuvilin, A., Meyer, J.C., Algara-Siller, G., and Kaiser, U.: From graphene constrictions to single carbon chains. New J. Phys. 11, 083109 (2009).CrossRefGoogle Scholar
Jin, C., Lan, H., Peng, L., Suenaga, K., and Iijima, S.: Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).CrossRefGoogle ScholarPubMed
Fischbein, M.D. and Drndić, M.: Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93(11), 113107 (2008).CrossRefGoogle Scholar
Jia, X., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Romo-Herrera, J.M., Son, H., Hsieh, Y-P., Reina, A., Kong, J., Terrones, M., and Dresselhaus, M.S.: Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922), 1701 (2009).CrossRefGoogle ScholarPubMed
Ritter, K.A. and Lyding, J.W.: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8(3), 235 (2009).CrossRefGoogle ScholarPubMed
Cretu, O., Botello-Mendez, A.R., Janowska, I., Cuong, P-H., Charlier, J-C., and Banhart, F.: Electrical transport measured in atomic carbon chains. Nano Lett. 13(8), 3487 (2013).CrossRefGoogle ScholarPubMed
Warner, J.H., Fan, Y., Robertson, A.W., He, K., Yoon, E., and Lee, G.D.: Rippling graphene at the nanoscale through dislocation addition. Nano Lett. 13(10), 4937 (2013).CrossRefGoogle ScholarPubMed
Chen, J., Shi, T., Cai, T., Xu, T., Sun, L., Wu, X., and Yu, D.: Self healing of defected graphene. Appl. Phys. Lett. 102(10), 103107 (2013).CrossRefGoogle Scholar
He, X., Xu, T., Xu, X., Zeng, Y., Xu, J., Sun, L., Wang, C., Xing, H., Wu, B., Lu, A., Liu, D., Chen, X., and Chu, J.: In-situ atom scale visualization of domain wall dynamics in VO2 insulator-metal phase transition. Sci. Rep. 4, 6544 (2014).CrossRefGoogle ScholarPubMed
Lin, Y-C., Dumcenco, D.O., Huang, Y-S., and Suenaga, K.: Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 . Nat. Nanotechnol. 9(5), 391 (2014).CrossRefGoogle ScholarPubMed
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., and Chhowalla, M.: Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano. 6(8), 7311 (2012).CrossRefGoogle ScholarPubMed
Barreiro, A., Borrnert, F., Rummeli, M.H., Buchner, B., and Vandersypen, L.M.: Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 12(4), 1873 (2012).CrossRefGoogle ScholarPubMed
Borrnert, F., Barreiro, A., Wolf, D., Katsnelson, M.I., Buchner, B., Vandersypen, L.M.K., and Rummeli, M.H.: Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 12(9), 4455 (2012).CrossRefGoogle ScholarPubMed
Huang, J.Y., Ding, F., Yakobson, B.I., Lu, P., Qi, L., and Li, J.: In-situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. U. S. A. 106(25), 10103 (2009).CrossRefGoogle ScholarPubMed
Torre, A.L., Botello-Mendez, A., Baaziz, W., Charlier, J.C., and Banhart, F.: Strain-induced metal-semiconductor transition observed in atomic carbon chains. Nat. Commun. 6, 6636 (2015).CrossRefGoogle ScholarPubMed
Lu, Y., Merchant, C.A., Drndic, M., and Johnson, A.T.C.: In-situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 11(12), 5184 (2011).CrossRefGoogle Scholar
Wang, M.S., Golberg, D., and Bando, Y.: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22(36), 4071 (2010).CrossRefGoogle ScholarPubMed
Zheng, H., Cao, A., Weinberger, C.R., Huang, J.Y., Du, K., Wang, J., Ma, Y., Xia, Y., and Mao, S.X.: Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1, 144 (2010).CrossRefGoogle ScholarPubMed
Wang, J.W., Narayanan, S., Huang, J.Y., Zhang, Z., Zhu, T., and Mao, S.X.: Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat. Commun. 4, 2340 (2013).CrossRefGoogle ScholarPubMed
Sun, J., He, L., Lo, Y.C., Xu, T., Bi, H., Sun, L., Zhang, Z., Mao, S.X., and Li, J.: Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13(11), 1007 (2014).CrossRefGoogle ScholarPubMed
Han, X.D., Zhang, Y.F., Zheng, K., Zhang, X.N., Zhang, Z., Hao, Y.J., Guo, X.Y., Yuan, J., and Wang, Z.L.: Low-temperature in-situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7(2), 452 (2007).CrossRefGoogle ScholarPubMed
Zheng, K., Han, X.D., Wang, L.H., Zhang, Y.F., Yue, Y.H., Qin, Y., Zhang, X.N., and Zhang, Z.: Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9(6), 2471 (2009).CrossRefGoogle ScholarPubMed
Zheng, K., Wang, C., Cheng, Y.Q., Yue, Y., Han, X., Zhang, Z., Shan, Z., Mao, S.X., Ye, M., Yin, Y., and Ma, E.: Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010).CrossRefGoogle ScholarPubMed
Wang, L., Liu, P., Guan, P., Yang, M., Sun, J., Cheng, Y., Hirata, A., Zhang, Z., Ma, E., Chen, M., and Han, X.: In-situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013).CrossRefGoogle ScholarPubMed
Tang, D-M., Kvashnin, D.G., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P.M., Yakobson, B.I., Sorokin, P.B., Lou, J., and Golberg, D.: Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 5, 3631 (2014).CrossRefGoogle ScholarPubMed
Wei, X., Xiao, S., Li, F., Tang, D.M., Chen, Q., Bando, Y., and Golberg, D.: Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett. 15(1), 689 (2015).CrossRefGoogle ScholarPubMed