Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T12:45:18.589Z Has data issue: false hasContentIssue false

Solidification of Al–Cu–Fe alloys forming icosahedral phase

Published online by Cambridge University Press:  31 January 2011

B. Grushko
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
R. Wittenberg
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
D. Holland-Moritz
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, and Institut für Raumsimulation, Deutsche Forschungsanstalt für Luft-und Raumfahrt, D-51140 Köln, Germany
Get access

Abstract

The solidification of a series of Al–Cu–Fe alloys containing an icosahedral phase has been studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, powder x-ray diffraction, and differential thermal analysis. The constitution and morphology of alloys solidified at different rates are presented. The overall compositional range of the icosahedral phase was determined in as-cast, slowly solidified alloys and those annealed at 800 and 600 °C. The solidification of this phase follows closely the Al3Fe–AlCu compositional direction. The first icosahedral phase solidified close to Al65.5Cu21.5Fe13; its compositional region at 800 °C lies between about Al64.5Cu23Fe12.5 and Al62Cu26.5Fe11.5, while at 600 °C it lies between Al62Cu26.5Fe11.5 and Al60.5Cu29.5Fe10. The formation of the icosahedral and related structures observed in Al–Cu–Fe alloys is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsai, A-P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).CrossRefGoogle Scholar
2.Gayle, F. W., Shapiro, A. J., Biancaniello, F. S., and Boettinger, W. J., Metall. Trans. 23A, 2409 (1992).CrossRefGoogle Scholar
3.Gratias, D., Calvayrac, Y., Devaud-Rzepski, J., Faudot, F., Harmelin, M., Quivy, A., and Bancel, P., J. Non-Cryst. Solids 153 & 154, 482 (1993).CrossRefGoogle Scholar
4.Bancel, P., Philos. Mag. Lett. 67, 43 (1993).CrossRefGoogle Scholar
5.Faudot, F., Ann. Chim. Fr. 18, 445 (1993).Google Scholar
6.Waseda, A., Kimura, K., and Ino, H., Mater. Trans. JIM 34, 169 (1993).CrossRefGoogle Scholar
7.Bradley, A. J. and Goldschmidt, H. J., J. Inst. Metals 65, 403 (1939).Google Scholar
8.Pevarsky, A. P., Izv. Akad. Nauk SSSR Metalli 221, 220 (1971) (in Russian).Google Scholar
9.Liu, W. and Köster, U., Mater. Sci. Eng. A133, 388 (1992).Google Scholar
10.Ebalard, S. and Spaepen, F., J. Mater. Res. 5, 62 (1990).CrossRefGoogle Scholar
11.Audier, M. and Guyot, P., in Proc. of the Anniversary Adriatico Res. Conf. on Quasicrystals, edited by Jaric, M. V. and Landqvist, S., Triest, Italy (World Scientific, Singapore, 1990).Google Scholar
12.Dubois, J. M., Dong, C., Janot, Ch., De Boissieu, M., and Audier, M., Phase Transitions 32, 3 (1991).CrossRefGoogle Scholar
13.Menguy, N., Audier, M., Guyot, P., and Vaucher, M., Philos. Mag. B 68, 595 (1993).CrossRefGoogle Scholar
14.Soustelle, C., Lyonnard, S., Calvayrac, Y., Andre, G., Bellissent, R., and Coddens, G., La Revue de Metall., 1118 (1993).CrossRefGoogle Scholar
15.Grushko, B., Mater. Trans. JIM 34, 116 (1993).CrossRefGoogle Scholar
16.Grushko, B., Phase Transitions 44, 99 (1993).CrossRefGoogle Scholar
17.Grushko, B., Philos. Mag. Lett. 66, 151 (1992).CrossRefGoogle Scholar
18.Balzuweit, K., Meekes, H., van Tandeloo, G., and de Boer, J. L., Philos. Mag. B 67, 513 (1993).CrossRefGoogle Scholar
19.Freiburg, C. and Grushko, B., J. Alloys Comp. 210, 149 (1994).CrossRefGoogle Scholar
20.Gayle, F. W., J. Phase Equilib. 13, 619 (1992).CrossRefGoogle Scholar
21.Grushko, B., Wittmann, R., and Urban, K., J. Mater. Res. 7, 2713 (1992).CrossRefGoogle Scholar
22.Liu, W., Schmücker, M., and Köster, U., Phys. Status Solidi (a) 124, 75 (1991).CrossRefGoogle Scholar
23.Holland-Moritz, D., Herlach, D. M., and Urban, K., Phys. Rev. Lett. 71, 1196 (1993).CrossRefGoogle Scholar
24.Holland-Moritz, D., Herlach, D. M., Grushko, B., and Urban, K., Mater. Sci. Eng. A178, 293 (1994).Google Scholar
25.Holland-Moritz, D., Schroes, J., Herlach, D. M., Grushko, B., and Urban, K., in Proc. 5th Int. Conf. on Quasicrystals, edited by Janot, C. and Mosseri, R., Avignon, France (World Scientific, Singapore, 1996).Google Scholar
26.Dénoyer, F., Launois, P., Motsch, T., and Lambert, M., J. Non-Cryst. Solids 153 & 154, 595 (1993).CrossRefGoogle Scholar
27.Okamoto, H. and Massalski, T. B., J. Phase Equilib. 14, 316 (1993).CrossRefGoogle Scholar
28.Barbier, J-N., Tamura, N., and Verger-Gaugry, J-L., J. Non-Cryst. Solids 153 & 154, 126 (1993).CrossRefGoogle Scholar
29.Cheng, Y. F., Hui, M. J., Chen, X. S., and Li, F. H., Philos. Mag. Lett. 61, 173 (1990).CrossRefGoogle Scholar
30.Wollgarten, M., Beyss, M., Urban, K., Liebertz, H., and Köster, U., Phys. Rev. Lett. 71, 549 (1993).CrossRefGoogle Scholar
31.Quiquandon, M., Quivy, A., Faudot, F., Sâadi, N., Calvayvac, Y., Lefebvre, S., and Bessière, M., in Proc. 5th Int. Conf. on Qua-sicrystals, edited by Janot, C. and Mosseri, R., Avignon, France (World Scientific, Singapore, 1996).Google Scholar