Hostname: page-component-6d856f89d9-jrqft Total loading time: 0 Render date: 2024-07-16T07:26:39.419Z Has data issue: false hasContentIssue false

Solidification of YBa2Cu3O6+δ: Part I. Morphology

Published online by Cambridge University Press:  31 January 2011

Hua Shen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Merton C. Flemings
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Michael J. Cima
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
John Haggerty
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Shoichi Honjo
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Karina Rigby
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Tae Hyun Sung
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

A new quenching technique was used for detailed microstructural examination of quenched YBa2Cu3O6+δ/liquid interfaces. The examination revealed that the growth rate and the amount of excess Y2BaCuO5 (211) had a strong influence on the growth morphology of YBa2Cu3O6+δ (123). The maximum growth rate at which single crystal growth could be obtained increased from 1 μm/s to 1.5 μm/s as excess 211 content increased from 0 to 20 wt. %. It then decreased to 1 μm/s as excess 211 increased to 40 wt. %. Dendritic growth with distinguishable secondary arms occurred for stoichiometric 123 samples in the regime of cellular/dendritic growth. A highly curved 123 envelope was formed on 211 particles located at the 123 growth interface for stoichiometric 123 samples in the regime of single crystal growth. The microscopic 123 growth interface became flat as excess 211 content increased to 20 wt. %. The engulfment of 211 particles into 123 matrix is discussed based on detailed microstructural examination. It is found that the formation of a small highly curved 123 envelope on 211 particles for stoichiometric 123 samples is due to the large 211 particle spacing.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tkaczyk, T. E., Briant, C. L., DeLuca, J. A., Hall, E. L., Karas, P. L., Lay, K. W., Narumi, E., and Shaw, D. T., J. Mater. Res. 7, 1317 (1992).Google Scholar
2.Nakahara, S., Fisanick, G. J., Yan, M. F., Van Doue, R. B., Boone, T., and Moore, R., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
3.Shi, Donglu, Chen, J. G., Xu, Ming, Cornellus, A. L., Balachandara, U., and Goretta, K. C., Supercond. Sci. Technol. 3, 222 (1990).Google Scholar
4.Chunlin, J., Zhanguo, Fan, Guofan, Zhang, Guiyi, Zeng, Weimin, Bian, Zhongxian, Zhao, and Shuquan, Guo, Supercond. Sci. Technol. (1991).Google Scholar
5.Salama, K., Selvamanickam, V., Gao, L., and Sum, K., Appl. Phys. Lett. 54 (23) (1989).Google Scholar
6.Varanasi, C., Mcginn, P. J., Pavate, V., and Kvam, E. P., Physica C 221 (1994).CrossRefGoogle Scholar
7.Lee, D. F., Chaud, X., and Salama, K., J. Mater. Res. (1993).Google Scholar
8.Ullrich, M., Muller, D., Heinemann, K., Niel, L., and Freyhardt, H. C., Physica C 198 (1992).CrossRefGoogle Scholar
9.Izumi, T. and Shiohara, Y., J. Mater. Res. 7, 16 (1992).CrossRefGoogle Scholar
10.Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, P. D., and Burns, S. J., Physica C 210 (1993).Google Scholar
11.Bateman, C. A., Xhang, L., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75 (5), (1992).Google Scholar
12.Frang, F., Vares, E., Ripamonti, G., and Zannella, S., Supercond. Sci. Technol. 7 (1994).Google Scholar
13.Rodriguez, M. A., Chen, Bin-Jiang, and Snyder, R. L., Physica C 195 (1992).Google Scholar
14.Chen, B. J., Rodriguez, M. A., Misture, S. T., and Snyder, R. L., Physica C 217 (1993).Google Scholar
15.Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72 (1), 1 July (1992).Google Scholar
16.Izumi, T., Nakamura, Y., and Shirohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
17.Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
18.Shen, H., Flemings, M. C., Cima, M. J., Haggerty, J., and Rigby, K., J. Mater. Res. (1997).Google Scholar
19.Shen, H., Flemings, M. C., Cima, M. J., and Haggerty, J., J. Mater. Res.Google Scholar
20.Honjo, S., Cima, M. J., Flemings, M. C., Ohkuma, T., Shen, H., Rigby, K., and Sung, T. H., J. Mater. Res. 12, 880 (1997).CrossRefGoogle Scholar
21.Kim, Chan-Joong, Kim, Ki-Baik, Chang, In-Soon, Won, Dong-Yeon, Moon, Hong-Chul, and Suhr, Dong-Soo, J. Mater. Res. 8, 699 (1993).CrossRefGoogle Scholar
22.Shen, H., Ph.D. Thesis, MIT (1995)Google Scholar