Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-26T08:58:12.089Z Has data issue: false hasContentIssue false

Structural studies of diamond thin films grown from dc arc plasma

Published online by Cambridge University Press:  31 January 2011

L. C. Nistor
Affiliation:
EMAT, University of Antwerpen, Groenenborgerlaan 171, B 2020 Antwerpen, Belgium
J. Van Landuyt
Affiliation:
EMAT, University of Antwerpen, Groenenborgerlaan 171, B 2020 Antwerpen, Belgium
V. G. Ralchenko
Affiliation:
General Physics Institute, ul. Vavilova 38, Moscow 117942, Russia
A. A. Smolin
Affiliation:
General Physics Institute, ul. Vavilova 38, Moscow 117942, Russia
K. G. Korotushenko
Affiliation:
General Physics Institute, ul. Vavilova 38, Moscow 117942, Russia
E. D. Obraztsova
Affiliation:
General Physics Institute, ul. Vavilova 38, Moscow 117942, Russia
Get access

Abstract

Diamond thin films grown from a dc-arc discharge in CH4/H2 mixtures on Si wafers were examined by transmission electron microscopy and Raman spectroscopy. This deposition method provides good diamond crystallinity at high CH4 concentrations (3%–9%). Seeding the substrate with 5 nm diamond particles at a density of 2 × 1012 cm−1 followed by argon laser irradiation to reduce their agglomeration gives, just after starting deposition, a density of growth centers of 1010cm−2. At 3% CH4 concentration the film grows with almost perfect crystallites. Richer CH4 mixtures (5% and 9%) produce crystallites with twins and stacking faults. An amorphous 20–70 nm SiC interlayer is present at these CH4 concentrations, which was not observed at 3% CH4. Amorphous sp3- and sp2-bonded carbon was detected by Raman spectroscopy at all CH4 concentrations and correlated with TEM data.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Proc. 2nd Int. Conference on the Applications of Diamond Films and Related Materials, edited by Yoshikawa, M., Murakawa, M., Tzeng, Y., and Yarbrough, W. A., MIU, Tokyo (1993).Google Scholar
2.Zhu, W., Kong, H. S., and Glass, J. T., in Diamond Films and Coatings, edited by Davies, R. F. (Noyes Publications, Park Ridge, NJ, 1992), p. 244.Google Scholar
3.Williams, B. E. and Glass, J. T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
4.Zhu, W., Badzian, A. R., and Messier, R., J. Mater. Res. 4, 659 (1989).CrossRefGoogle Scholar
5.Zhu, W., Randall, C. A., Badzian, A. R., and Messier, R., J. Vac. Sci. Technol. A7, 2315 (1989).CrossRefGoogle Scholar
6.Ma, G. H. M., Williams, B. E., Glass, J. T., and Prater, J. T., Diamond and Related Mater. 1, 25 (1991).CrossRefGoogle Scholar
7.Shechtman, D., Farabaugh, E. N., Robins, L. H., Feldman, A., and Hutchison, J. L., in Diamond Optics IV, SPIE Proc. 1534, 26 (1991).Google Scholar
8.Eto, H., Tamou, Y., Ohsawa, Y., and Kikuchi, N., Diamond and Related Mater. 1, 373 (1991).CrossRefGoogle Scholar
9.Gruen, D. M., Pan, X., Crauss, A. R., Liu, S., Luo, J., and Foster, C. M., J. Vac. Sci. Technol. A12, 1491 (1994).CrossRefGoogle Scholar
10.Joksch, M., Wurzinger, P., Pongratz, P., Haubner, R., and Lux, B., Diamond and Related Mater. 3, 681 (1994).CrossRefGoogle Scholar
11.Sheldon, B. W., Csencsits, R., Rankin, J., Boekenhauer, R. E., and Shigesato, Y., J. Appl. Phys. 75, 5001 (1994).CrossRefGoogle Scholar
12.Malta, D. P., Posthill, J. B., Fitzgerald, E. A., Rudder, R. A., Hudson, G. C., and Marcunas, R. J., in Proc. 3rd Int. Symp. on Diamond Materials, edited by Desmukes, J. P., Ravi, K. V., Spear, K. E., Lux, B., and Setaka, N. (The Electrochem. Soc., Pennington, NJ, 1993), Vol. 93–17 (1993), p. 647.Google Scholar
13.Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
14.Ohsawa, Y., Tamou, Y., Kikuchi, N., Hiraga, K., and Oku, T., J. Mater. Sci. 26, 3748 (1991).CrossRefGoogle Scholar
15.Kikuchi, N., Ohsawa, Y., Tamou, Y., Eto, H., and Yamashita, H., in Proc. 2nd Int. Conference on New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, Pittsburgh, PA, 1991), p. 567.Google Scholar
16.Jiang, N., Zhang, Z., Sun, B. W., and Shi, D., Appl. Phys. Lett. 63, 328 (1993).CrossRefGoogle Scholar
17.Tsai, C. and Gerberich, W., J. Mater. Res. 6, 2127 (1991).CrossRefGoogle Scholar
18.Tarutani, M., Takai, Y., and Shimizu, R., Jpn. J. Appl. Phys. 31, L1307 (1992).CrossRefGoogle Scholar
19.Konov, V. I., Smolin, A. A., Ralchenko, V. G., Pimenov, S. M., Obraztsova, E. D., Lobnin, E. N., Metev, S. M., and Sepold, G., paper presented at 5th European Conference DIAMOND FILMS'94, Il Ciocco, Italy, Sept. 1994; Diamond and Related Mater. 4, 1073 (1995).Google Scholar
20.Balakirev, V. G., Alexenko, A. E., Botev, A. V., Bouilov, L. L., and Spitsyn, B. V., in Proc. 1st Int. Seminar on Diamond Films, June 30–July 6, 1991, Moscow, p. 35.Google Scholar
21.Bouilov, L. L., Alexenko, A. E., Botev, A. A., and Spitsyn, B. V., Soviet Physics-Doklady, 287, 888 Dok. Akad. Nauk SSSR (Sov. Phys. Dokl.) (1986) (in Russian).Google Scholar
22.Chapliev, N. I., Konov, V. I., Pimenov, S. M., Prokhorov, A. M., and Smolin, A. A., Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, Amsterdam, 1991), p. 417.Google Scholar
23.Smolin, A. A., Ralchenko, V. G., Pimenov, S. M., Kononenko, T. V., and Lobnin, E. N., Appl. Phys. Lett. 62, 3449 (1993).CrossRefGoogle Scholar
24.Ralchenko, V. G., Korotoushenko, K. G., Smolin, A. A., and Konov, V. I., Advances in New Diamond Science and Technology, edited by Saito, S., Fujimory, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M. (MY, Tokyo, 1994), p. 493.Google Scholar
25.Ihara, M., Komiyama, H., and Okubo, T., Appl. Phys. Lett. 65, 1192 (1994).CrossRefGoogle Scholar
26.Yagui, H., Mori, Y., Hatta, A., Ito, T., and Hiraki, A., Jpn. J. Appl. Phys. 32, L1775 (1993).CrossRefGoogle Scholar
27.Paillard, V., Melinon, P., Dupuis, V., Perez, J. P., Perez, A., and Champagnon, B., Phys. Rev. Lett. 71, 4170 (1993).CrossRefGoogle Scholar
28.McKenzie, D. R., Müller, D., Pailthorpe, B. A., Wang, Z. H., Kravchtinskaia, E., Segal, D., Lukins, P. B., Swift, P. D., Martin, P. J., Amaratunga, G., Gaskell, P. H., and Saeed, A., Diamond and Related Mater. 1, 51 (1991).CrossRefGoogle Scholar
29.Bertolotti, M., Liakhou, G. L., Ferrari, A., Ralchenko, V. G., Smolin, A. A., Obraztsova, E., Korotoushenko, K. G., Pimenov, S. M., and Konov, V. I., J. Appl. Phys. 75, 7795 (1994).CrossRefGoogle Scholar
30.Graebner, J. E., Ralchenko, V. G., Smolin, A. A., Obraztsova, E. D., Korotushenko, K. G., and Konov, V. I., Diamond and Related Mater. 5, 693 (1996).Google Scholar
31.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).Google Scholar
32.Shroder, R. E., Nemanich, R. J., and Glass, J. T., Phys. Rev. B 41, 3738 (1990).CrossRefGoogle Scholar
33.Nistor, L. C., Van Landuyt, J., Ralchenko, V. G., Kononenko, T. V., Obraztsova, E. D., and Strelnitski, V. E., Appl. Phys. A 58, 137 (1994).CrossRefGoogle Scholar
34.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
35.Yoshikawa, H., Kikuchi, N., Yamashita, H., Matsui, Y., and Marumoto, K., in Proc. 2nd Int. Conference on the Applications of Diamond Films and Related Materials, edited by Yoshikawa, M., Murakawa, M., Tzeng, Y., and Yarbrough, W. A. (MIU, Tokyo, 1993), p. 445.Google Scholar
36.Bachmann, P. K., Leers, D., and Wiechert, D. U., Diamond and Related Mater. 2, 683 (1993).CrossRefGoogle Scholar
37.Fallon, P. J. and Brown, L. M., Diamond and Related Mater. 2, 1004 (1993).CrossRefGoogle Scholar
38.Hirabayashi, K. and Hirose, Y., J. Cryst. Growth 142, 140 (1994).CrossRefGoogle Scholar
39.Angus, J. C., Sunkara, M., Sahaida, S. R., and Glass, J. T., J. Mater. Res. 7, 3001 (1992).CrossRefGoogle Scholar