Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-14T09:48:07.216Z Has data issue: false hasContentIssue false

Structure and spectroscopic properties of (AA′)(BB′)O3 mixed-perovskite crystals

Published online by Cambridge University Press:  01 December 2005

Dorota A. Pawlak*
Affiliation:
Institute of Electronic Materials Technology, 01-919 Warszawa, Poland
Masahiko Ito
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon University, CNRS UMR 5620, Villeurbanne, Cedex 69622, France
Lukasz Dobrzycki
Affiliation:
Warsaw University, Chemistry Department, 02-093 Warszawa, Poland
Krzysztof Wozniak
Affiliation:
Warsaw University, Chemistry Department, 02-093 Warszawa, Poland
Masaoki Oku
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Kiyoshi Shimamura
Affiliation:
Advanced Materials Laboratory National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
Tsuguo Fukuda
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: Dorota.Pawlak@itme.edu.pl
Get access

Abstract

Five different mixed-perovskite (AA′)(BB′)O3 single crystals were grown, where A = La, Nd; A′ = Sr; B = Al, Ga; and B′ = Ta, Nb. The as-grown crystals were yellowish/brownish. After annealing in air, the coloration was more intense. Annealing in a reducing atmosphere decreased coloration. The crystals were investigated by transmission spectroscopy, electron spectroscopy for chemical analysis (ESCA), and single-crystal x-ray diffraction. Additional broad absorption bands in the transmission spectra were observed for the as-grown samples. They are in line with the changes of the shape of O(1s) ESCA peaks. Redundant interstitial oxygen ions were recognized as the reason for the crystal coloration. All structures were solved and refined in different space groups of the regular system. Some of the unit cells have a doubled lattice constant: (i) lanthanum strontium gallium niobate, Pm3m, 3.9323(5) Å, at 100 K, 3.9270(5) Å; (ii) neodymium strontium aluminum tantalate, Pm3m, 3.8353(4) Å; (iii) lanthanum strontium aluminum tantalate, Pn3m, 7.720(1) Å, annealed in reducing atmosphere, 7.708(1) Å; (iv) neodymium strontium aluminum niobate, Fm3m, 7.744(4) Å.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shimamura, K., Tabata, H., Takeda, H., Kochurikhin, V.V. and Fukuda, T.: Growth and characterization of (La,Sr)(At,Ta)O3 single crystals as substrates for GaN epitaxial. J. Cryst. Growth 194, 209 (1998).CrossRefGoogle Scholar
2.Mateika, D., Kohler, H., Laudan, H. and Völkel, E.: Mixed-perovskite substrates for high-Tc superconductors. J. Cryst. Growth 109, 441 (1991).Google Scholar
3.Haussühl, S. and Mateika, D.: Elastic and thermoelastic properties of the twinned perovskite LaGaO3 and the cubic untwinned perovskite La0.294Sr0.706Al0.647Ta0.353O3. Cryst. Res. Technol. 26, 481 (1991).CrossRefGoogle Scholar
4.Chakoumakos, B.C., Schlom, D.G., Urbanik, M. and Luine, J.: Thermal expansion of LaAlO3 and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979 (1998).CrossRefGoogle Scholar
5.Goodenough, J.B., Zhou, J.-S., Egami, T. and Cooper, S.L.: Localized to Itinerant Electronic Transition in Perovskite Oxides (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
6.Bernhardt, H.: On the coloration behaviour of undoped YAlO3 crystals. J. Phys. Stat. Sol. (a) 21, 95 (1974).Google Scholar
7.Baryshevsky, V.G., Korzhik, M.V., Minkov, B.I., Smirnova, S.A., Fyodorov, A.A., Dorenbos, P. and Vaneijk, C.W.E.: Spectroscopy and scintillation properties of cerium-doped YAlO3 single crystals. J. Phys.: Condens. Matter 5, 7893 (1993).Google Scholar
8.Danger, T., Petermann, K. and Huber, G.: Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3. Appl. Phys. A 57, 309 (1993).Google Scholar
9.Baryshnikov, V.I., Kvapil, J., Sarakura, N. and Segawa, Y.: Especialities of Ti3+ excitation in YAlO3 crystals. J. Lumin. 72, 157 (1997).CrossRefGoogle Scholar
10.Ito, M., Shimamura, K., Pawlak, D.A. and Fukuda, T.: Growth of perovskite-type oxides (RE,Sr)(Al,Ta)O3 as substrates for GaN epitaxial growth (RE = La, Nd). J. Cryst. Growth 235, 277 (2002).CrossRefGoogle Scholar
11.Ito, M., Shimamura, K., Pawlak, D.A. and Fukuda, T.: Growth and characterization of the perovskite-type oxide (Nd,Sr)(Al,Nb)O3 and (La,Sr)(Ga,Nb)O3 as substrates for GaN epitaxial growth. J. Alloys Compd. 339, 335 (2002).CrossRefGoogle Scholar
12.Czochralski, J.: Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z. Phys. Chem. 92, 219 (1918).Google Scholar
13.Sheldrick, G.M.: Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. A 46, 467 (1990).CrossRefGoogle Scholar
14.Sheldrick, G.M.: SHELXL93. Program for the Refinement of Crystal Structures (University of Göttingen, Göttingen, Germany).Google Scholar
15.Barr, T.L.: Modern ESCA (CRC, Boca Raton, FL, 1994).Google Scholar
16.Barr, T.L.: An XPS study of Si as it occurs in adsorbents, catalysts, and thin films. Appl. Surf. Sci. 15, 1 (1983).CrossRefGoogle Scholar
17.Pawlak, D.A., Wozniak, K., Frukacz, Z., Barr, T.L., Fiorentino, D. and Seal, S.: ESCA studies of yttrium aluminium garnets. J. Phys. Chem. B 103, 1454 (1999).CrossRefGoogle Scholar
18.Pawlak, D.A., Wozniak, K., Frukacz, Z., Barr, T.L., Fiorentino, D. and Hardcastle, S.: ESCA studies of yttrium orthoaluminium perovskites. J. Phys. Chem. B 103, 3332 (1999).CrossRefGoogle Scholar
19.Pawlak, D.A., Ito, M., Oku, M., Shimamura, K. and Fukuda, T.: Interpretation of XPS O(1s) in mixed oxides, proved on the mixed perovskite crystals. J. Phys. Chem. B 106(2), 504 (2002).CrossRefGoogle Scholar
20.Barth, T.: Die Kristallstruktur von Perowskit und Verwandten Verbindungen. Nor. Geol. Tidsskr. 8, 201 (1925).Google Scholar
21.Ruddlesden, S.N. and Popper, P.: New compounds of the K2NIF4 type. Acta Crystallogr. 10, 538 (1957).CrossRefGoogle Scholar
22.Ruddlesden, S.N. and Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54 (1958).CrossRefGoogle Scholar
23.Tao, D.J., Wu, H.X., Xu, X.D., Yan, R.S., Liu, F.Y., Sinha, A.P.B., Jiang, X.P. and Hu, H.L.: Czochralski growth of (La,Sr)(Al,Ta)O3 single crystal. Opt. Mater 23, 425 (2003).CrossRefGoogle Scholar
24.Sakowska, H., Swirkowicz, M., Mazur, K., Lukasiewicz, T. and Witek, A.: Growth and characterization of (La,Sr)(Al,Ta)O3 single crystals: A promising substrate for GaN epitaxial growth. Cryst. Res. Technol. 36, 851 (2001).3.0.CO;2-N>CrossRefGoogle Scholar
25.Xiao, J., Shao, M., Tian, Y., Huang, W., Wang, A. and Yin, S.: Czochralski growth and topographic study of tetragonal (La,Sr)(Al,Ta)O3 single crystals. J. Cryst. Growth 236, 671 (2002).Google Scholar
26.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar