Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T16:05:20.094Z Has data issue: false hasContentIssue false

Structure-induced effects on the selective wet thermal oxidation of digital AlxGa1–xAs alloys

Published online by Cambridge University Press:  31 January 2011

I. Suarez
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 31077 Toulouse Cedex 4, France
M. Condé
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 31077 Toulouse Cedex 4, France
L. Bouscayrol
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 31077 Toulouse Cedex 4, France
C. Fontaine
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 31077 Toulouse Cedex 4, France
G. Almuneau*
Affiliation:
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, 31077 Toulouse Cedex 4, France
*
a)Address all correspondence to this author. e-mail: almuneau@laas.fr
Get access

Abstract

A thorough study of the selective wet oxidation in digital AlxGa1–xAs alloys is presented. We report experimental results and physical interpretation on the oxidation kinetics within those ranges of the AlGaAs composition (x = 0.95 to 1) and layer thickness (20 to 50 nm) of interest for oxide-aperture vertical-cavity surface-emitting laser (VCSEL) application. We demonstrate the high controllability of the oxidation reaction between different Al compositions; made different thanks to the use of digital alloys. Unlike standard alloys, we measured an invariability of the oxidation rates in the studied thickness range (20–50 nm), implying a better control of the fabrication process. The dependence of the reaction rate with the temperature is expressed as an Arrhenius law. Two activation energies (1.2 and 0.55 eV) have been derived for composition ranges of x = 0.95–0.98 and x = 0.99–1, respectively, revealing that two different mechanisms are involved depending on the Al content and the superlattice structure of the digitally-grown AlGaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dallesasse, J.M., Holonyak, N., Sugg, A.R., Richard, T.A., El-Zein, N.: Hydrolyzation oxidation of AlxGa1–xAs–AlAs–GaAs quantum well heterostructures and superlattices. Appl. Phys. Lett. 57, 2844 1990CrossRefGoogle Scholar
2Choquette, K.D., Geib, K.M., Ashby, C.I.H., Twesten, R.D., Blum, O., Hou, H.Q., Follstaedt, D.M., Hammons, B.E., Mathes, D., Hull, R.: Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Top. Quantum Electron. 3, 913 1997CrossRefGoogle Scholar
3Kim, J.H., Lim, D.H., Yang, G.M., Lim, K.Y., Lee, H.J.: Lateral wet oxidation of AlxGa1–xAs-GaAs depending on its structures. Appl. Phys. Lett. 69, 3357 1996CrossRefGoogle Scholar
4Choquette, K.D., Lear, K.L., Schneider, R.P., Geib, K.M., Figiel, J.J., Hull, R.: Fabrication and performance of selectively oxidized vertical-cavity lasers. IEEE Photonics Technol. Lett. 7, 1237 1995CrossRefGoogle Scholar
5Monat, C., Alloing, B., Zinoni, C., Li, L.H., Fiore, A.: Nanostructured current-confined single quantum dot light-emitting diode at >1300 nm. Nano Lett. 6, 1464 2006CrossRefGoogle Scholar
6Todaro, M.T., Stomeo, T., Vitale, V., DeVittorio, M., Passaseo, A., Cingolani, R., Romananto, F., Businaro, L., Di Fabrizio, E.: Nanofabrication of high refractive index contrast two-dimensional photonic crystal waveguides. Microelectron. Eng. 67–68, 670 2003CrossRefGoogle Scholar
7Chang, K.S., Song, Y.M., Lee, Y.T.: Microlens fabrication by selective oxidation of composition-graded digital alloy AlGaAs. IEEE Photonics Technol. Lett. 18, 121 2006CrossRefGoogle Scholar
8Fiore, A., Berger, V., Rosencher, E., Bravetti, P., Nagle, J.: Phase matching using an isotropic nonlinear optical material. Nature 391, 463 1998CrossRefGoogle Scholar
9Ku, P.C., Hernandez, J.A., Chang-Hasnain, C.J.: Buried selectively-oxidized AlGaAs structures grown on nonplanar substrates. Opt. Express 10, 1003 2002CrossRefGoogle ScholarPubMed
10Ashby, C.I.H., Sullivan, J.P., Choquette, K.D., Geib, K.M., Hou, H.Q.: Wet oxidation of AlGaAs: The role of hydrogen. J. Appl. Phys. 82, 3134 1997CrossRefGoogle Scholar
11Ochiai, M., Giudice, G.E., Temkin, H., Scott, J.W., Cockerill, T.M.: Kinetics of thermal oxidation of AlAs in water vapor. Appl. Phys. Lett. 68, 1898 1996CrossRefGoogle Scholar
12Ashby, C.I.H., Bridges, M.M., Allerman, A.A., Hammons, B.E., Hou, H.Q.: Origin of the time dependence of wet oxidation of AlGaAs. Appl. Phys. Lett. 75, 73 1999CrossRefGoogle Scholar
13Pickrell, G.W., Epple, J.H., Chang, K.L., Hsieh, K.C., Cheng, K.Y.: Improvement of wet-oxidized AlxGa1–xAs (x∼1) through the use of AlAs/GaAs digital alloys. Appl. Phys. Lett. 76, 2544 2000CrossRefGoogle Scholar
14Todt, R., Dovidenko, K., Katsnelson, A., Tokranov, V., Yakimov, M., Oktyabrsky, S.: Oxidation kinetics and microstructure of wet-oxidized MBE-grown short-period AlGaAs superlattices in Progress in Semiconductor Materials for Optoelectronic Applications, edited by E.D. Jones, O. Manasreh, K.D. Choquette, D.J. Friedman, and D.K. Johnstone (Mater. Res. Soc. Symp. Proc. 692, Warrendale, PA, 2002), p. 561CrossRefGoogle Scholar
15Chang, Y-C., Wang, C.S., Coldren, L.A.: Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers. Electron. Lett. 43, 396 2007CrossRefGoogle Scholar
16Ku, P.C., Chang-Hasnain, C.J.: Thermal oxidation of AlGaAs: Modeling and process control. IEEE J. Quantum Electron. 39, 577 2003Google Scholar
17Deal, B.E., Grove, A.S.: General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770 1965CrossRefGoogle Scholar
18Koley, B., Dagenais, M., Jin, R., Simonis, G., Pham, J., McLane, G., Johnson, F., Whaley, R. Jr.: Dependence of lateral oxidation rate on thickness of AlAs layer of interest as a current aperture in vertical-cavity surface-emitting laser structures. J. Appl. Phys. 84, 600 1998CrossRefGoogle Scholar
19Luo, Y., Hall, D.C.: Non selective wet oxidation of AlGaAs heterostructure waveguides through controlled addition of oxygen. IEEE J. Sel. Top. Quantum Electron. 11, 1284 2005CrossRefGoogle Scholar
20Naone, R.L., Coldren, L.A.: Surface energy model for the thickness dependence of the lateral oxidation of AlAs. J. Appl. Phys. 82, 2277 1997CrossRefGoogle Scholar