Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-27T14:54:52.242Z Has data issue: false hasContentIssue false

Studies on characterization, magnetic and electrochemical properties of nano-size pure and mixed ternary transition metal ferrites prepared by the auto-combustion method

Published online by Cambridge University Press:  04 August 2020

M. Khairy*
Affiliation:
Chemistry Department, Faculty of Science, Benha University, Benha13511, Egypt Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh11461, Saudi Arabia
W. A. Bayoumy
Affiliation:
Chemistry Department, Faculty of Science, Benha University, Benha13511, Egypt
S. S. Selima
Affiliation:
Chemistry Department, Faculty of Science, Benha University, Benha13511, Egypt
M. A. Mousa
Affiliation:
Chemistry Department, Faculty of Science, Benha University, Benha13511, Egypt
*
a)Address all correspondence to this author. e-mail: mohkhairy@fsc.bu.edu.eg, moh_khairy3@yahoo.com
Get access

Abstract

Nanocrystallites of pure and mixed ternary ferrites, NiFe2O4 (NiF), CuFe2O4 (CuF), CoFe2O4 (CoF), Ni0.5Cu0.5Fe2O4 (CuNiF), Ni0.5Co0.5Fe2O4 (NiCoF), and Cu0.5Co0.5Fe2O4 (CuCoF) were prepared using the auto-combustion method employing urea as a fuel. The obtained materials were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron miscroscopy (TEM), scanning electron microscopy (SEM), and BET techniques. The elemental composition of the prepared samples was checked by X-ray fluorescence (XRF) analysis. XRD indicated that the as-synthesized samples exhibit a pure spinel crystal structure. The samples have crystallite sizes ranged from 12 to 47 nm. SEM and TEM analyses showed almost spherical morphology for all ferrite particles. The M–H curves recorded using the VSM (vibrating sample magnetometer) technique showed ferromagnetic hysteresis loop for all the samples investigated. The ferrite samples were tested to be used as a supercapacitor electrode material. It is found that the measured specific capacitance of the ferrite electrodes increases according to CuCoF > NiCoF > CoF > NiCuF > CuF > NiF. The CuCoF sample showed the greatest specific capacitance of 220 F/g at discharging current density l of A/g with, an energy density of 34.72 Wh/kg and power density of 605 W/kg. The magnetic properties were also measured for the obtained nanoparticles.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hazra, S. and Ghosh, N.N.: Preparation of nanoferrites and their applications. J. Nanosci. Nanotech. 14, 1983 (2014).CrossRefGoogle ScholarPubMed
Gao, Y, Wang, Z, Pei, J., and Zhang, H.: Structure and magnetic properties correlated with cation distribution of Ni0.5-xMoxZn0.5Fe2O4 ferrites prepared by sol-gel auto-combustion method. Ceram. Int. 44, 20148 (2018).CrossRefGoogle Scholar
Yanagihara, H., Sharmin, S., Niizeki, T., and Kita, E.: Magnetic properties of spinel ferrite thin films grown by reactive sputtering. Mater. Trans. 57, 777 (2016).CrossRefGoogle Scholar
Oliveira, V.D.d., Rubinger, R.M., Silva, M.R.d., Oliveira, A.F., and Rodrigues, G.: Magnetic and electrical properties of MnxCu1−xFe2O4 ferrite. Mater. Res. 19, 786 (2016).CrossRefGoogle Scholar
Li, J., Yuan, H., Li, G., Liu, Y., and Leng, J.: Cation distribution dependence of magnetic properties of sol-gel prepared MnFe2O4 spinel ferrite nanoparticles. J. Magn. Magn. Mater. 322, 3396 (2010).CrossRefGoogle Scholar
Kumar, P.R. and Mitra, S.: Nickel ferrite as a stable, high capacity and high rate anode for Li-ion battery applications. RSC Adv. 3, 25058 (2013).CrossRefGoogle Scholar
Islam, M., Ali, G., Jeong, M.G., Choi, W., Chung, K.Y., and Jung, H.-G.: Study on the electrochemical reaction mechanism of NiFe2O4 as a high-performance anode for Li-Ion batteries. ACS Appl. Mater. Interface 9, 1483314843 (2017).CrossRefGoogle Scholar
Wu, F., Wang, X., Li, M., and Xu, H.: A high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteries. Ceram. Int. 42, 16666 (2016).CrossRefGoogle Scholar
Gao, H., Liu, S., Li, Y., Conte, E., and Cao, Y.: A critical review of spinel structured iron-cobalt oxides based materials for electrochemical energy storage and conversion. Energies 10, 1787 (2017).CrossRefGoogle Scholar
Yin, J., Shen, L., Li, Y., and Lu, M.: CoFe2O4 nanoparticles as efficient bifunctional catalysts applied in Zn–air battery. J. Mater. Res. 33, 590 (2018).CrossRefGoogle Scholar
Zhang, W., Quan, B., Lee, C., Park, S.-K., Li, X., Choi, E., Diao, G., and Piao, Y.: One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces 7, 2404 (2015).CrossRefGoogle ScholarPubMed
Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., and Muthamizhchelvan, C.: Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol-gel auto-combustion method. Mater. Res. Bull. 46, 2204 (2011).CrossRefGoogle Scholar
Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kaufman, M., and Kiminami, R.H.G.A.: Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders. J. Mater. Sci. 37, 3569 (2002).CrossRefGoogle Scholar
Panigrahi, M.R. and Panigrahi, S.: Structural analysis of 100% relative intense peak of Ba1−xCaxTiO3 ceramics by X-ray powder diffraction method. Physica B 405, 1787 (2010).CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1970).Google Scholar
Srinivasan, T.T., Srivastava, C.M., Venkataramani, N., and Patini, M.J.: Infrared absorption in spinel ferrites. Bull. Mater. Sci. 6, 1063 (1984).CrossRefGoogle Scholar
Patil, R.P., Delekar, S.D., Mane, D.R., and Hankare, P.P.: Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results Phys. 3, 129 (2013).CrossRefGoogle Scholar
Şabikoğlua, İ, Paralı, L., Malina, O., Novak, P., Kaslik, J., Tucek, J., Pechousek, J., Navarik, J., and Schneeweiss, O.: The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite. Prog. Nat. Sci. Mater. Int. 25, 215 (2015).CrossRefGoogle Scholar
Rathod, V., V. Anupama, A., V. Kumar, R, M. Jali, V., and Sahoo, B: Correlated vibrations of thetetrahedral and octahedral complexes and splitting of the absorption bands inFTIR spectra of Li-Zn ferrites. Vib.Spectrosc. 92, 267 (2017).CrossRefGoogle Scholar
Pradeep, A., Priyadharsini, P., and Chandrasekaran, G.: Sol gel route of Synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320, 2774 (2008).CrossRefGoogle Scholar
Bhujun, B., Tan, M.T.T., and Shanmugam, A.S.: Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345 (2017).CrossRefGoogle Scholar
Sotomayor, F.J., Cychosz, A.K., and Thommes, M.: Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res. 3, 34 (2018).Google Scholar
Khan, M., Khalid, W., and Mumtaz, A.: Magnetic characterization of Co1−xNixFe2O4 (0⩽x⩽1) nanoparticles prepared by co-precipitation route. Physica E 41, 593 (2009).Google Scholar
Velhal, N.B., Patil, N.D., Shelke, A.R., Deshpande, N.G., and Puri, V.R.: Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration. AIP Adv. 5, 097166 (2015).CrossRefGoogle Scholar
Rao, K.S., Choudary, G.S.V.R.K., Rao, K.H., and Sujatha, C.: Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Proc. Mater. Sci. 10, 19 (2015).CrossRefGoogle Scholar
Muthurani, S., Balaji, M., Gautam, S., Chae, K.H., Song, J.H., Padiyan, D.P., and Asokan, K.: Magnetic and humidity sensing properties of nanostructured CuxCo1−xFe2O4 synthesized by autocombustion technique. J. Nanosci. Nanotechnol. 11, 5850 (2011).CrossRefGoogle Scholar
Akhter, S., Paul, D.P., Hakim, M.A., Akhter, S., Hoque, S.M., and Das, H.N.: Magnetic properties of Cu1−xZnxFe2O4 ferrites with the variation of zinc concentration. J. Mod. Phys. 3, 398 (2012).CrossRefGoogle Scholar
Zinovik, M.A. and Zinovik, E.V.: Ferrites with rectangular and square hysteresis loops. Powder Metall. Met. Ceram. 44, 66 (2005).CrossRefGoogle Scholar
Mohammad, A.M., Aliridh, S.M., and Mubarak, T.H.: Structural and magnetic properties of Mg-Co ferrite nanoparticles. Dig. J. Nanomater. Bios. 13, 615 (2018).Google Scholar
Peddis, D., Yaacoub, N., Ferretti, M., and Fiorani, D.: Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter 23, 426004 (2011).CrossRefGoogle ScholarPubMed
Darbandi, M., Stromberg, F., Landers, J., Reckers, N., Sanyal, B., Keune, W., and Wende, H.: Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D. Appl. Phys. 45, 195001 (2012).CrossRefGoogle Scholar
Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., and Tokura, Y.: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012).CrossRefGoogle ScholarPubMed
Pubby, K., Babu, K.V., and Narang, S.B.: Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites. Mater. Sci. Eng. B 255, 114513 (2020).CrossRefGoogle Scholar
Naik, S.R. and Stalker, A.V.: Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22, 2740 (2012).CrossRefGoogle Scholar
Raju, K. and Yoon, D.H.: Structural and magnetic properties of Zn and Co substituted nickel ferrites prepared by the citrate sol–gel method. J. Supercond. Nov. Magn. 27, 1285 (2014).CrossRefGoogle Scholar
Bruno, P. and Renard, J.-P.: Magnetic surface anisotropy of transition metal ultrathin films. Appl. Phys. A 49, 499 (1989).CrossRefGoogle Scholar
Mallick, J. P.: Comparative study of the structure & magnetic properties of nickel cobalt ferrites synthesized by solid-state & auto-combustion processing techniques. Thesis, Department of Ceramic Engineering, National Institute of Technology, Rourkela, 2011.Google Scholar
Skomski, R. and Sellmyer, D.J.: Handbook of advanced magnetic materials. Adv. Magn. Mater. 1, 30 (2005).Google Scholar
Moradmard, H., Shayesteh, S.F., Tohidi, P., Abbas, Z., and Khaleghi, M.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116 (2015).CrossRefGoogle Scholar
Pavithradevi, S., Suriyanarayanan, N., and Boobalan, T.: Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles. J. Magn. Magn. Mater. 426, 137 (2017).CrossRefGoogle Scholar
Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuřitka, I., and Kožáková, Z.: Cation migration-induced crystal phase transformation in copper ferrite nanoparticles and their magnetic property. J. Supercond. Nov. Magn. 29, 759 (2016).CrossRefGoogle Scholar
Mazrouei, A. and Saidi, A.: Microstructure and magnetic properties of cobalt ferrite nano powder prepared by solution combustion synthesis. Mater. Chem. Phys. 209, 152 (2018).CrossRefGoogle Scholar
Purnama, B., Wijayanta, A.T., and Suharyana, : Effect of calcination temperature on structural and magnetic properties in cobalt ferrite nano particles. J. King Saud Univ. Sci. 31, 956 (2019).CrossRefGoogle Scholar
Balavijayalakshmi, J., Suriyanarayanan, N., and Jayaprakash, R.: Role of copper on structural, magnetic and dielectric properties of nickel ferrite nanoparticles. J. Magn. Magn. Mater. 385, 302 (2015).CrossRefGoogle Scholar
Naresh, U., Kumar, R.J., and Naidu, K.C.B.: Hydrothermal synthesis of barium copper ferrite nanoparticles: Nanofiber formation, optical, and magnetic properties. Mater. Chem. Phys. 236, 121807 (2019).CrossRefGoogle Scholar
Manikandana, V., Kuncserb, V., Vasilec, B., Kavitad, S., Vigneselvane, S., and Manef, R.S.: Enhancement in magnetic and dielectric properties of the ruthenium-doped copper ferrite (RuCuFe2O4) nanoparticles. J. Magn. Magn. Mater. 476, 18 (2019).CrossRefGoogle Scholar
Imanipour, P., Hasani, S., Afshari, M., Sheykh, S., Seifoddini, A., and Jahanbani-Ardakani, K.: The effect of divalent ions of zinc and strontium substitution on the structural and magnetic properties on the cobalt site in cobalt ferrite. J. Magn. Magn. Mater. 510, 166941 (2020).CrossRefGoogle Scholar
Kavitha, S. and Kurian, M.: Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. J. Alloys Compd. 799, 147 (2019).CrossRefGoogle Scholar
Han, D., Xu, P., Jing, X., Wang, J., Yang, P., Shen, Q., Liu, J., Song, D., Gao, Z., and Zhang, M.: Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J. Power Sources 235, 45 (2013).CrossRefGoogle Scholar
Ghouri, Z. K, Barakat, N. A. M., and Kim, H. Y.: Synthesisand Electrochemical Properties of MnO2 and Co-Decorated Graphene asNovel Nanocomposite for Electrochemical Super Capacitors Application. Energy and Environ. Focus 4, 34 (2015).CrossRefGoogle Scholar
Javed, M.S., Dai, S., Wang, M., Guo, D., Chen, L., Wang, X., Hu, C., and Xi, Y.: High-performance solid-state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power Sources 285, 63 (2015).CrossRefGoogle Scholar
Sharifi, S., Yazdani, A., and Rahimi, K.: Effect of Co2+ content on supercapacitance properties of hydrothermally synthesized Ni1−xCoxFe2O4 nanoparticles. Mater. Sci. Semicond. Proc. 108, 104902 (2020).CrossRefGoogle Scholar
Martinez-Vargasa, S., Mtz-Enriquezb, A.I., Flores-Zuñigac, H., Encinasc, A., and Olivac, J.: Enhancing the capacitance and tailoring the discharge times of flexible graphene supercapacitors with cobalt ferrite nanoparticles. Synth. Metals 264, 116384 (2020).CrossRefGoogle Scholar
Sankar, K.V., Selvan, R.K., and Meyrick, D.: Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv. 5, 99959 (2015).CrossRefGoogle Scholar
Bhujun, B., Tan, M.T., and Shanmugam, A.S.: Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345 (2017).CrossRefGoogle Scholar
Shakira, I., Rasheedc, A., Haiderd, S., and Aboud, M.F.A.: The Impact of Cu2+ and Mg2+ onto the electrochemical energy storage properties of nanocrystalline Co0.8Ni0.2Fe2O4 particles and their hybrids with graphene. Ceram. Intern. 45, 18099 (2019).CrossRefGoogle Scholar
Bhujun, B., Tan, M.T., and Shanmugam, A.S.: Study of mixe ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345 (2017).CrossRefGoogle Scholar
Ran, F., Zhang, X., Liu, Y., Shen, K., Niu, X., Tan, Y., Kong, L., Kang, L., Xu, C., and Chen, S.: Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Adv. 5, 87077 (2015).CrossRefGoogle Scholar
Mousa, M.A., Khairy, M., and Shehab, M.: Nanostructured ferrite/graphene/polyaniline using for supercapacitor to enhance the capacitive behavior. J. Solid State Electrochem. 21, 995 (2017).CrossRefGoogle Scholar