Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T16:12:02.878Z Has data issue: false hasContentIssue false

Temperature increases caused by shear banding in as-cast and relaxed Zr-based bulk metallic glasses under compression

Published online by Cambridge University Press:  31 January 2011

W.H. Jiang*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
F.X. Liu
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
H.H. Liao
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
H. Choo
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200; and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
B.J. Edwards
Affiliation:
Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
B. Khomami
Affiliation:
Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
*
a)Address all correspondence to this author. e-mail: wjiang5@utk.edu
Get access

Abstract

Using an infrared camera, the temperature evolution of as-cast and relaxed bulk metallic glasses during compression was measured. Substantial variations in the temperatures of both glasses during plastic deformation were observed, which are conjectured to result at least partially from shear-banding phenomena. The relaxed glass has a larger temperature rise than the as-cast glass, which can be attributed to a reduction in the free volume. The larger temperature increase in the relaxed glass may be responsible for the observed work softening. The relaxed glass also has a higher maximum temperature than the as-cast, which can be attributed to a stronger strain-rate dependence of the temperature rise rate, and a shorter dissipation time scale for the heat due to conduction. The experimental data follow the well-known model behavior, and suggest the possibility of a statistical correlation between the fluctuations of strain rates and the rates of the temperature variation.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
2Johnson, W.L.: Bulk amorphous metal—An emerging engineering material. JOM 54, 40 2002CrossRefGoogle Scholar
3Inoue, A., Shen, B.L., Koshiba, H., Kato, H., Yavari, A.R.: Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2, 661 2003CrossRefGoogle ScholarPubMed
4Peter, W.H., Liaw, P.K., Buchanan, R.A., Liu, C.T., Brooks, C.R., Horton, J.A., Carmichael, C.A., Wright, J.L.: Fatigue behavior of Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass. Intermetallics 10, 1125 2002CrossRefGoogle Scholar
5Wang, G.Y., Liaw, P.K., Peker, A., Yang, B., Benson, M.L., Yuan, W., Peter, W.H., Huang, L., Freels, A., Buchanan, R.A., Liu, C.T., Brooks, C.R.: Fatigue behavior of Zr–Ti–Ni–Cu–Be bulk-metallic glasses. Intermetallics 13, 429 2005CrossRefGoogle Scholar
6Freels, M., Liaw, P.K., Wang, G.Y., Zhang, Q.S., Hu, Z.Q.: Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass. J. Mater. Res. 22, 374 2007CrossRefGoogle Scholar
7Qiao, D.C., Wang, G.Y., Liaw, P.K., Ponnambalam, V., Poon, S.J., Shiflet, G.J.: Fatigue behavior of an Fe48Cr15Mo14Er2C15B6 amorphous steel. J. Mater. Res. 22, 544 2007CrossRefGoogle Scholar
8Kimura, H., Masumoto, T.: Amorphous Metallic Alloys: Strength, Ductility and Toughness—A Model Study in Mechanics edited by F.E. Luborsky Butterworths London 1983 187CrossRefGoogle Scholar
9Spaepen, F., Taub, A.I.: Amorphous Metallic Alloys: Flow and Fracture edited by F.E. Luborsky Butterworths London 1983 248–256Google Scholar
10Leamy, H.J., Chen, H.S., Wang, T.T.: Plastic-flow and fracture of metallic glass. Metall. Trans. 3, 699 1972CrossRefGoogle Scholar
11Chen, H.S.: Plastic-flow in metallic glasses under compression. Scr. Metall. 7, 931 1973CrossRefGoogle Scholar
12Argon, A.S.: Plastic-deformation in metallic glasses. Acta Metall. 27, 47 1979CrossRefGoogle Scholar
13Wright, W.J., Schwarz, R.B., Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 2001CrossRefGoogle Scholar
14Jiang, W.H., Liu, F.X., Liao, H.H., Choo, H., Liaw, P.K.: In situ thermographic observations on the compression behavior of a relaxed Zr-based bulk-metallic glass. J. Mater. Res. 22, 386 2007CrossRefGoogle Scholar
15Yang, B., Morrison, M.L., Liaw, P.K., Raymond, R.A., Wang, G.Y., Liu, C.T., Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 2005CrossRefGoogle Scholar
16Yang, B., Liaw, P.K., Wang, G.Y., Morrison, M.L., Liu, C.T., Buchanan, R.A., Yokoyama, Y.: In situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics 12, 1265 2004CrossRefGoogle Scholar
17Bruck, H.A., Rosakis, A.J., Johnson, W.L.: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 1996CrossRefGoogle Scholar
18Lewandowski, J.J., Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 2006CrossRefGoogle Scholar
19Bian, Z., He, G., Chen, G.L.: Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals. Scr. Mater. 46, 407 2002CrossRefGoogle Scholar
20Murah, P., Ramamurty, U.: Embrittlement of a bulk metallic glass due to sub-T-g annealing. Acta Mater. 53, 1467 2005Google Scholar
21Ramamurty, U., Lee, M.L., Basu, J., Li, Y.: Embrittlement of a bulk metallic glass due to low-temperature annealing. Scr. Mater. 47, 107 2002CrossRefGoogle Scholar
22Zhang, Z.H., Xie, J.X.: Influence of relaxation and crystallization on micro-hardness and deformation of bulk metallic glass. Mater. Sci. Eng., A 407, 161 2005CrossRefGoogle Scholar
23Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr. Mater. 46, 43 2002CrossRefGoogle Scholar
24Schuh, C.A., Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 2003CrossRefGoogle Scholar
25Schuh, C.A., Lund, A.C., Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 2004CrossRefGoogle Scholar
26Zhang, G.P., Wang, W., Zhang, B., Tan, J., Liu, C.S.: On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scr. Mater. 52, 1147 2005CrossRefGoogle Scholar
27Schuh, C.A., Argon, A.S., Nieh, T.G., Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 2003CrossRefGoogle Scholar
28Kimura, H., Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31, 231 1983CrossRefGoogle Scholar
29Kimura, H., Masumoto, T.: Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending tests. 1. Model mechanics of inhomogeneous plastic-flow in non-strain hardening solid. Acta Metall. 28, 1663 1980CrossRefGoogle Scholar
30Kimura, H., Masumoto, T.: A model of the mechanics of shear-crack propagation in tearing for amorphous metals. 2. Kinetics of inhomogeneous flow. Philos. Mag. A 44, 1021 1981CrossRefGoogle Scholar
31Schuh, C.A., Nieh, T.G., Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 2002CrossRefGoogle Scholar
32Jiang, W.H., Atzmon, M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 2003CrossRefGoogle Scholar
33Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H., Liaw, P.K.: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 2006CrossRefGoogle Scholar
34Jiang, W.H., Liu, F.X., Qiao, D.C., Choo, H., Liaw, P.K.: Plastic flow in dynamic compression of a Zr-based bulk metallic glass. J. Mater. Res. 21, 1570 2006CrossRefGoogle Scholar
35Jiang, W.H., Fan, G.J., Choo, H., Liaw, P.K.: Ductility of a Zr-based bulk-metallic glass with different specimen’s geometries. Mater. Lett. 60, 3537 2006CrossRefGoogle Scholar
36Zhang, Z.F., Zhang, H., Pan, X.F., Das, J., Eckert, J.: Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 2005CrossRefGoogle Scholar
37Bei, H., Xie, S., George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 2006CrossRefGoogle Scholar
38Jiang, W.H., Liu, F.X., Choo, H., Liaw, P.K.: Effect of structural relaxation on mechanical behavior of a Zr-based bulk-metallic glass. Mater. Trans. 48, 1781 2007CrossRefGoogle Scholar
39Slipenyuk, A., Eckert, J.: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 2004CrossRefGoogle Scholar
40Hori, F., Yano, T., Yokoyama, Y., Akeno, Y., Konno, T.J.: Free volume change in crystallization process of Zr–Cu–Al metallic glass studied by positron annihilation techniques. J. Alloys Compd. 434, 207 2007CrossRefGoogle Scholar
41Yano, T., Yorikado, Y., Akeno, Y., Hori, F., Yokoyama, Y., Iwase, A., Inoue, A., Konno, T.J.: Relaxation and crystallization behavior of the Zr50Cu40Al10 metallic glass. Mater. Trans. 46, 2886 2005CrossRefGoogle Scholar
42Jiang, W.H., Atzmon, M.: Plastic flow of a nanocrystalline/amorphous Al90Fe5Gd5 composite formed by rolling. Intermetallics 14, 962 2006CrossRefGoogle Scholar
43Jiang, W.H., Pinkerton, F.E., Atzmon, M.: Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469 2005CrossRefGoogle Scholar
44Jiang, W.H., Liu, F.X., Wang, Y.D., Zhang, H.F., Choo, H., Liaw, P.K.: Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses. Mater. Sci. Eng., A 430, 350 2006CrossRefGoogle Scholar
45Donovan, P.E., Stobbs, W.M.: The structure of shear bands in metallic glass. Acta Metall. 29, 1419 1981CrossRefGoogle Scholar
46Pekarskaya, E., Kim, C.P., Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 2001CrossRefGoogle Scholar
47Jiang, W.H., Atzmon, M.: Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission-electron-microscopy study. Scr. Mater. 54, 333 2006CrossRefGoogle Scholar
48Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems Oxford University Press New York 1994Google Scholar
49Dressler, M., Edwards, B.J., Öttinger, H.C.: Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 38, 117 1999CrossRefGoogle Scholar
50Edwards, B.J., Feigl, K., Morrison, M.L., Yang, B., Liaw, P.K., Buchanan, R.A.: Modeling the dynamic propagation of shear bands in bulk metallic glasses. Scr. Mater. 53, 881 2005CrossRefGoogle Scholar
51Aydmer, C.C., Üstündag, E., Hanan, J.C.: Thermal-tempering analysis of bulk metallic glass plates using an instant-freezing model. Metall. Mater. Trans. A 32, 2709 2001CrossRefGoogle Scholar
52Glade, S.C., Busch, R., Lee, D.S., Johnson, W.L., Wunderlich, R.K., Fecht, H.J.: Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9 Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87, 7242 2000CrossRefGoogle Scholar
53Mukherjee, S., Schroers, J., Zhou, Z., Johnson, W.L., Rhim, W-K.: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689 2004CrossRefGoogle Scholar