Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-09T07:28:06.364Z Has data issue: false hasContentIssue false

Comparative evaluation of Kalman filters and motion models in vehicular state estimation and path prediction

Published online by Cambridge University Press:  04 June 2021

Lu Tao*
Affiliation:
Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi, Japan.
Yousuke Watanabe
Affiliation:
Institute of Innovation for Future Society, Nagoya University, Chikusa, Nagoya, Aichi, Japan
Shunya Yamada
Affiliation:
Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi, Japan.
Hiroaki Takada
Affiliation:
Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi, Japan. Institute of Innovation for Future Society, Nagoya University, Chikusa, Nagoya, Aichi, Japan
*
Corresponding author. E-mail: tao.lu@a.mbox.nagoya-u.ac.jp

Abstract

Vehicle state estimation and path prediction, which usually involve Kalman filter and motion model, are critical tasks for intelligent driving. In vehicle state estimation, the comparative performance assessment, regarding accuracy and efficiency, of the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) is rarely discussed. This paper is devoted to empirically evaluating the performance of UKF and EKF incorporating different motion models and investigating the models’ properties and the affecting factors in path prediction. Extensive real world experiments have been carried out and the results show that EKF and UKF have roughly identical accuracy in state estimation; however, EKF is faster than UKF generally; the fastest filter is about 2⋅6 times faster than the slowest. The path prediction experiments reveal that the velocity estimate and the used motion model affect path prediction; the more realistically the model reflects the vehicle's driving status, the more reliable its predictions.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gelb, A. (1974). Applied Optimal Estimation. Cambridge, MA: MIT Press.Google Scholar
Houenou, A., Bonnifait, P., Cherfaoui, V. and Yao, W. (2013). Vehicle Trajectory Prediction Based on Motion Model and Maneuver Recognition. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 4363–4369.CrossRefGoogle Scholar
Julier, S. J. (2002). The scaled unscented transformation. IEEE, 6, 45554559. doi:10.1109/ACC.2002.1025369Google Scholar
Julier, S. J. and Durrant-Whyte, H. F. (2003). On the role of process models in autonomous land vehicle navigation systems. IEEE Transactions on Robotics and Automation, 19, 114. doi:10.1109/TRA.2002.805661CrossRefGoogle Scholar
Julier, S. J. and Uhlmann, J. K. (1997). A New Extension of the Kalman Filter to Nonlinear Systems. Proc. SPIE 3068. Signal Processing, Sensor Fusion, and Target Recognition, VI. International Society for Optics and Photonics, pp. 182194.CrossRefGoogle Scholar
Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. F. (1995). A New Approach for Filtering Nonlinear Systems. Procs. 1995 American Control Conference - ACC’95, 3, pp. 16281632. doi:10.1109/ACC.1995.529783CrossRefGoogle Scholar
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 3545. doi:10.1115/1.3662552CrossRefGoogle Scholar
Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K. and Weil, T. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13, 584616. doi:10.1109/SURV.2011.061411.00019CrossRefGoogle Scholar
Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K. and Hamada, T. (2015). An open approach to autonomous vehicles. IEEE Micro, 35, 6068. doi:10.1109/MM.2015.133CrossRefGoogle Scholar
Lefebvre, T., Bruyninckx, H., De Schutter, J. (2004). Kalman filters for nonlinear systems: A comparison of performance. International Journal of Control, 77, 639653.CrossRefGoogle Scholar
Lefèvre, S., Vasquez, D. and Laugier, C. (2014). A survey on motion prediction and risk assessment for intelligent vehicles. Robomech Journal, 1, 1.CrossRefGoogle Scholar
Liu, R., Wang, J. and Zhang, B. (2020). High definition map for automated driving: Overview and analysis. The Journal of Navigation, 73, 324341. doi:10.1017/S0373463319000638CrossRefGoogle Scholar
Lytrivis, P., Thomaidis, G., Tsogas, M. and Amditis, A. (2011). An advanced cooperative path prediction algorithm for safety applications in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 12, 669679. doi:10.1109/TITS.2011.2123096CrossRefGoogle Scholar
Madhavan, R., Kootbally, Z. and Schlenoff, C. (2006). Prediction in Dynamic Environments for Autonomous On-Road Driving. Control, Automation, Robotics and Vision, 2006. ICARCV’06. 9th International Conference On, IEEE, pp. 16.CrossRefGoogle Scholar
Ndjeng Ndjeng, A., Lambert, A., Gruyer, D. and Glaser, S. (2009). Experimental Comparison of Kalman Filters for Vehicle Localization. 2009 IEEE Intelligent Vehicles Symposium (IV), IEEE, Xi'an, China, pp. 441446. doi:10.1109/IVS.2009.5164318CrossRefGoogle Scholar
Polychronopoulos, A., Tsogas, M., Amditis, A. J. and Andreone, L. (2007). Sensor fusion for predicting vehicles’ path for collision avoidance systems. IEEE Transactions on Intelligent Transportation Systems, 8, 549562. doi:10.1109/TITS.2007.903439CrossRefGoogle Scholar
Schneider, R. and Georgakis, C. (2013). How to not make the extended Kalman filter fail. Industrial & Engineering Chemistry Research, 52, 33543362. doi:10.1021/ie300415dCrossRefGoogle ScholarPubMed
Schubert, R., Richter, E. and Wanielik, G. (2008). Comparison and Evaluation of Advanced Motion Models for Vehicle Tracking. 2008 11th International Conference on Information Fusion, IEEE, pp. 16.Google Scholar
Schubert, R., Adam, C., Obst, M., Mattern, N., Leonhardt, V. and Wanielik, G. (2011). Empirical Evaluation of Vehicular Models for Ego Motion Estimation. 2011 IEEE Intelligent Vehicles Symposium (IV), IEEE, Baden-Baden, Germany, pp. 534539. doi:10.1109/IVS.2011.5940526CrossRefGoogle Scholar
SENSORIS (2019). https://sensor-is.org/ (accessed 29 May 2019).Google Scholar
St-Pierre, M. and Gingras, D. (2004). Comparison Between the Unscented Kalman Filter and the Extended Kalman Filter for the Position Estimation Module of an Integrated Navigation Information System. IEEE Intelligent Vehicles Symposium, Citeseer, pp. 831835.Google Scholar
Tan, H.-S. and Huang, J. (2006). DGPS-based vehicle-to-vehicle cooperative collision warning: Engineering feasibility viewpoints. IEEE Transactions on Intelligent Transportation Systems, 7, 415428. doi:10.1109/TITS.2006.883938CrossRefGoogle Scholar
Tsogas, M., Polychronopoulos, A. and Amditis, A. (2005). Unscented Kalman Filter Design for Curvilinear Motion Models Suitable for Automotive Safety Applications. 2005 7th International Conference on Information Fusion. Presented at the 2005 7th International Conference on Information Fusion, IEEE, Philadelphia, PA, USA, p. 8. doi:10.1109/ICIF.2005.1592006CrossRefGoogle Scholar
Wan, E. A. and Van Der Merwe, R. (2000). The Unscented Kalman Filter for Nonlinear Estimation. IEEE, 153158. doi:10.1109/ASSPCC.2000.882463Google Scholar
Watanabe, Y., Sato, K. and Takada, H. (2018). Dynamicmap 2.0: A traffic data management platform leveraging clouds, edges and embedded systems. International Journal of Intelligent Transportation Systems Research, doi:10.1007/s13177-018-0173-7Google Scholar
Weiß, C. (2011). V2x communication in Europe – from research projects towards standardization and field testing of vehicle communication technology. Computer Networks, Deploying vehicle-2-x communication, 55, 31033119. doi:10.1016/j.comnet.2011.03.016CrossRefGoogle Scholar
Yang, C., Shi, W. and Chen, W. (2017). Comparison of unscented and extended kalman filters with application in vehicle navigation. The Journal of Navigation, 70, 411431. doi:10.1017/S0373463316000655CrossRefGoogle Scholar