Hostname: page-component-599cfd5f84-cdgjw Total loading time: 0 Render date: 2025-01-07T06:01:06.832Z Has data issue: false hasContentIssue false

An unusual new gastropod from an Eocene hydrocarbon seep in Washington State

Published online by Cambridge University Press:  20 May 2016

Steffen Kiel*
Affiliation:
Earth Sciences, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom, and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA,

Extract

Subduction-Related Hydrocarbon-Seep carbonates in Cenozoic deepwater sediments in western Washington State, USA, yield fossil invertebrate communities that are largely endemic to these localized microhabitats (Goedert and Squires, 1990; Peckmann et al., 2002; Goedert et al., 2003; Kiel, 2006). An unusually large species of the deep-sea gastropod Abyssochrysos Tomlin, 1927 has been described from the oldest of these seep carbonates, which occurs in the Humptulips Formation on the southern slopes of the Olympic Mountains (Goedert and Kaler, 1996). New material of this species was recently collected at this site and shows that this species has a deep notch and a selenizone at the base of the outer lip, a feature that is very unusual among living gastropods, and unknown from Abyssochrysos. This feature is also present on two gastropod specimens, found in the collection of the Burke Museum (UWBM) that are, according to the label, from the Humptulips area but without detailed locality information. Stable isotope analysis of the micritic matrix adhering to the specimens showed δ13C values as low as −37 to − 41‰ relative to PDB standard. Such negative values clearly indicate that the carbonate formed under the influence of anaerobic oxidation of biogenic methane (cf. Whiticar, 1999; Peckmann et al., 2002). The isotope analysis was carried out in the same lab using the same methods as described in Kiel (2006). The Humptulips area is currently covered with dense vegetation and attempts to locate the carbonate outcrop where these two specimens could have come from have been unsuccessful. The purpose of this note is to introduce a new genus for this unusual species, to discuss its possible place among the gastropods, and to speculate about the function of the two deep sinuses in the outer lip of the aperture.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. T. 1960. The genus Strombus in the Indopacific. Indo-Pacific Mollusca, 1:33146.Google Scholar
Anton, H. E. 1838. Verzeichniss der Conchylien welche sich in der Sammlung von Herrmann Eduard Anton befinden. Privately published, Halle, 110 p.Google Scholar
Bandel, K. 2005. Living fossils among tiny Allogastropoda with high and slender shell from the reef environment of the Gulf of Aqaba with remarks on fossil and recent relatives. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 89:124.Google Scholar
Bandel, K. and Kiel, S. 2000. Earliest known (Campanian) members of the Vermetidae, Provannidae and Litiopidae (Cerithioidea, Gastropoda), and a discussion of their possible relationships. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 84:209218.Google Scholar
Bandel, K. and Kowalke, T. 1997. Cretaceous Laxispira and a discussion on the monophyly of vermetids and turritellids (Caenogastropoda, Mollusca). Geologica et Palaeontologica, 31:257274.Google Scholar
Bouchet, P. 1991. New records and species of Abyssochrysos (Mollusca, Caenogastropoda). Journal of Natural History, 25:305313.Google Scholar
Bouchet, P. and Warén, A. 1991. Ifremeria nautilei, nouveau gastéropode d'évents hydothermaux, probablement associté à des bactéries symbiontiques. Comptes Rendus de l'Académie des Sciences, Paris, 312:495501.Google Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:362407.CrossRefGoogle Scholar
Clark, B. L. 1925. Pelecypoda from the marine Oligocene of western North America. University of California Publications in Geological Sciences, 15: 69136.Google Scholar
Clarke, A. H. 1989. New mollusks from undersea oil seep sites off Louisiana. Malacology Data Net, 2:122134.Google Scholar
Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and Van Andel, T. H. 1979. Submarine thermal springs on the Galápagos Rift. Science, 203:10731083.Google Scholar
Cox, L. R. 1959. Thoughts on the classification of the Gastropoda. Proceedings of the Malacological Society of London, 33:239261.Google Scholar
Cuvier, G. L. C. F. D. 1797. Table Élémentaire de l'Historie Naturelle des Animaux. Baudouin, Paris, 710 p.Google Scholar
Frýda, J. and Bandel, K. 1997. New Early Devonian gastropods from the Plectonotus (Boucotonotus)-Palaeozygopleura Community in the Prague Basin (Bohemia). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 80:157.Google Scholar
Gill, F. L., Harding, I. C., Little, C. T. S., and Todd, J. A. 2005. Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 227: 191209.Google Scholar
Goedert, J. L. and Kaler, K. L. 1996. A new species of Abyssochrysos (Gastropoda: Loxonematoidea) from a Middle Eocene cold-seep carbonate in the Humptulips Formation, western Washington. The Veliger, 39:6570.Google Scholar
Goedert, J. L. and Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology, 18:11821185.Google Scholar
Goedert, J. L., Thiel, V., Schmale, O., Rau, W. W., Michaelis, W., and Peckmann, J. 2003. The late Eocene ‘Whiskey Creek’ methane-seep deposit (western Washington State) Part I: Geology, palaeontology, and molecular geobiology. Facies, 48:223240.Google Scholar
Gray, J. E. 1840. Synopsis of the Contents of the British Museum, London, 370 p.Google Scholar
Gray, M. E. 1842-1857. Figures of Molluscous Animals. Volumes 5. London.Google Scholar
Hickman, C. S. 1976. Bathyal gastropods of the family Turridae in the early Oligocene Keasey Formation in Oregon, with a review of some deep-water genera in the Paleogene of the eastern Pacific. Bulletins of American Paleontology, 70:1119.Google Scholar
Houbrick, R. S. 1979. Classification and systematic relationships of the Abyssochrysidae, a relict family of bathyal snails (Prosobranchia: Gastropoda). Smithsonian Contributions to Zoology, 290:121.Google Scholar
Kiel, S. 2006. New records and species of mollusks from Tertiary cold-seep carbonates in Washington State, U.S.A. Journal of Paleontology, 80:121137.CrossRefGoogle Scholar
Kiel, S. and Little, C. T. S. 2006. Cold seep mollusks are older than the general marine mollusk fauna. Science, 313:14291431.CrossRefGoogle Scholar
Killeen, I. J. and Oliver, P. G. 2000. A new species of Abyssochrysos (Gastropoda: Loxonematiodea) from the Oman margin. Journal of Molluscan Studies, 66:9598.CrossRefGoogle Scholar
Knight, J. B. 1930. The gastropods of the St. Louis, Missouri, Pennsylvanian outlier. Journal of Paleontology, 4(Supplement 1):189.Google Scholar
Koken, E. 1889. Über die Entwicklung der Gastropoden vom Cambrium bis zur Trias. Neues Jahrbuch für Mineralogie, Paläontologie, und Geologie, Beilage-Band, 6:305484.Google Scholar
Linnaeus, C. V. 1758. Systema Naturae (tenth edition). Laurrentii Salvii, Holmiae, 824 p.Google Scholar
Little, C. T. S. and Vrijenhoek, R. C. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution, 18:582588.Google Scholar
Marwick, J. 1957. Generic revision of the Turritellidae. Proceedings of the Malacological Society of London, 32:144166.Google Scholar
Moroni, M. A. 1966. Malacofauna del “Calcare a Lucine” di S. Sofia—Forlì. Palaeontographica Italica, 40:6987.Google Scholar
Nützel, A. 1998. Über die Stammesgeschichte der Ptenoglossa (Gastropoda). Berliner geowissenschaftliche Abhandlungen, Reihe E, 26:1229, 235 pls.Google Scholar
Nützel, A. and Bandel, K. 2000. Goniasmidae and Orthonemidae: Two new families of Palaeozoic Caenogastropoda (Mollusca, Gastropoda). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2000:557569.CrossRefGoogle Scholar
Okutani, T. and Ohta, S. 1988. A new gastropod mollusk associated with hydrothermal vents in the Mariana Back-Arc Basin, Western Pacific. Venus, 47:19.Google Scholar
Peckmann, J., Goedert, J. L., Thiel, V., Michaelis, W., and Reitner, J. 2002. A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, U.S.A. Sedimentology, 49:855873.Google Scholar
Phillips, J. 1841. Figures and Descriptions of the Palaeozoic Fossils of Cornwall, Devon, and West Somerset. Longman, Brown, Green, and Longmans, London, 231 p.Google Scholar
Röding, P. F. 1798. Museum Boltenianum. Johann Christian Trappi, Hamburg, 199 p.Google Scholar
Rouse, G. W., Goffredi, S. K., and Vrijenhoek, R. C. 2004. Osedax: Bone-eating marine worms with dwarf males. Science, 305:668671.Google Scholar
Saul, L. R., Squires, R. L., and Goedert, J. L. 1996. A new genus of cryptic lucinid? bivalve from Eocene cold seeps and turbidite-influenced mudstone, western Washington. Journal of Paleontology, 70:788794.Google Scholar
Smith, C. R. and Baco, A. R. 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology: an Annual Review, 41:311354.Google Scholar
Taviani, M. 1994. The “calcari a Lucina“ macrofauna reconsidered: Deepsea faunal oases from Miocene-age cold vents in the Romagna Apennine, Italy. Geo-Marine Letters, 14:185191.Google Scholar
Tomlin, J. R. L. B. 1927. Reports on the marine Mollusca in the collections of the South African Museum II. Families Abyssochrysidae, Oocorythidae, Haliotidae, Tonnidae. Annals of the South African Museum, 25:7783.Google Scholar
Tomlin, J. R. L. B. 1930. Some preoccupied generic names. Proceedings of the Malacological Society of London, 19:2224.Google Scholar
Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M., and Vrijenhoek, R. C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 295:12531257.CrossRefGoogle ScholarPubMed
Van Dover, C. L., Humphris, S. E., Fornari, D., Cavanaugh, C. M., Collier, R., Goffredi, S. K., Hashimoto, J., Lilley, M. D., Reysenbach, A. L., Shank, T. M., Von Damm, K. L., Banta, A., Gallant, R. M., Götz, D., Green, D., Hall, J., Harmer, T. L., Hurtado, L. A., Johnson, P., McKiness, Z. P., Meredith, C., Olson, E., Pan, I. L., Turnipseed, M., Won, Y.-J., Young, C. R., and Vrijenhoek, R. C. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294:818823.Google Scholar
Warén, A., Bengtson, S., Goffredi, S. K., and Van Dover, C. L. 2003. A hot-vent gastropod with iron sulfide dermal sclerites. Science, 302:1007.Google Scholar
Warén, A. and Bouchet, P. 1986. Four new species of Provanna Dall (Prosobranchia, Cerithiacea?) from East Pacific hydrothermal sites. Zoologica Scripta, 15:157164.Google Scholar
Warén, A. and Bouchet, P. 2001. Gastropoda and Monoplacophora from hydrothermal vents and seeps; new taxa and records. The Veliger, 44:116231.Google Scholar
Warén, A. and Ponder, W. F. 1991. New species, anatomy, and systematic position of the hydrothermal vent and hydrocarbon seep gastropod family Provannidae fam. n. (Caenogastropoda). Zoologica Scripta, 20:56102.CrossRefGoogle Scholar
Wenz, W. 1938-1944. Gastropoda Teil 1: Allgemeiner Teil und Prosobranchia, p. 7211639. In Schindewolf, H. (ed.), Handbuch der Paläozoologie. Gebrüder Borntraeger, Berlin.Google Scholar
Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161:291314.Google Scholar