Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T15:39:04.830Z Has data issue: false hasContentIssue false

Evolution and phylogenetic significance of cardioidean shell microstructure (Mollusca, Bivalvia)

Published online by Cambridge University Press:  20 May 2016

Jay A. Schneider
Affiliation:
Department of Geology and Geophysics, University of Wisconsin, Madison,
Joseph G. Carter
Affiliation:
Department of Geological Sciences, University of North Carolina, Chapel Hill, 27599,

Abstract

The shell microstructure of Carboniferous and Triassic permophorids; Triassic and Recent carditids; Devonian, Carboniferous, and Triassic crassatelloideans; and Jurassic through Recent cardioideans is examined in a phylogenetic context, using separate microstructural and morphologic data sets, as well as a combined data set. The microstructural and morphologic data sets are significantly incongruent, but the combined data set suggests that modiomorphoideans (modiomorphids and permophorids) are basal to crassatelloideans; crassatelloideans are basal to carditids (including Septocardia), and carditids are basal to cardiids. On the other hand, the possibility of direct permophorid ancestry for the carditid-cardiid clade cannot be excluded, as suggested by the retention of permophorid-like matted (transitional nacreous-porcelaneous) structure in some early carditids and cardiids. In the absence of stratigraphic data and other evidence for phylogenetic relationships, shell microstructure offers limited potential for assessing subfamily-level phylogenetic relationships within the Cardioidea. This is because of microstructural convergences reflecting biomechanical adaptations for fracture control and abrasion resistance, and possibly also selection for metabolic economy of secretion in tropical, oligotrophic habitats. General evolutionary trends in cardiid shell microstructure are nevertheless apparent: Cretaceous cardiids completely replaced an ancestral laminar, matted structure in their inner shell layer with non-laminar porcelaneous structures; evolved better defined CL structure, stronger reflection of the shell margins, and increased thickness or secondary loss of the ancestral prismatic outer shell layer; and, in Protocardia (Pachycardium) stantoni, added inductural deposition. Some Cenozoic cardiids then evolved wider first-order crossed lamellae, non-denticular composite prisms, composite fibrous prisms, ontogenetic submergence of a juvenile non-denticular composite prismatic outer shell layer into the CL middle shell layer, or ontogenetic submergence of the inner part of a juvenile fibrous prismatic outer shell layer into the CL middle shell layer.

The shell microstructure of Hemidonax donaciformis is unusual for a cardioidean, and suggests closer affinities with the superfamily Tellinoidea than with the superfamily Cardioidea.

Extensive inductural deposits in Protocardia (Pachycardium) stantoni raise the possibility that photosymbiosis evolved among some Mesozoic members of the Protocardiinae, thereby increasing the likelihood that this feature has evolved several times independently in the Cardiidae.

Cemented, calcareous periostracal granules or spines are known to occur in modiolopsoideans, mytiloideans, modiomorphids, permophorids, trigonioids, astartids, cardiids, myoids, pholadomyoids, and septibranchoids. Consequently, the presence of these structures is not necessarily indicative of close anomalodesmatan affinities.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcazar, S. N., Solis, E. P., and Alcala, A. C. 1987. Serotonin-induced spawning and larval rearing of the China clam, Hippopus porcellanous Rosewater (Bivalvia; Tridacnidae). Aquaculture, 66:359368.CrossRefGoogle Scholar
Archambault-Guezou, J. 1982. Microanalyse de tests de lamellibranches actuels. Mise en évidence de zonations chimiques de croissance. Malacologia, 22:319324.Google Scholar
Badve, R. M. 1977. Profraginae, a new cardiid subfamily from the Upper Cretaceous rock formations of south India. Biovigyanam, 3:6164.Google Scholar
Bernard, F. 1897. Quatrième et dernière note sur le développement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société Géologique de France, 3rd sér., 25:559566.Google Scholar
Berry, B. F., and Playford, P. E. 1997. Biology of modern Fragum erugatum (Mollusca, Bivalvia, Cardiidae) in relation to deposition of the Hamelin Coquina, Shark Bay, Western Australia. Marine and Freshwater Research, 48:415420.CrossRefGoogle Scholar
Bittner, A. 1895. Lamellibranchiaten der Alpinen Trias. I. Theil: Revision der Lamellibranchiaten von St. Cassian. Abhandlungen der Kaiserlichen Koeniglichen Geologischen Reichsanstalt, Wien, 18:1235.Google Scholar
B⊘ggild, O. B. 1930. The shell structure of the Mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, ser. 9, 2:231326.Google Scholar
Boss, K. J. 1982. Mollusca, p. 9451166. In Parker, S. P. (ed.), Synopsis and Classification of Living Organisms. Volume 2. McGraw-Hill, New York.Google Scholar
Boyd, D. W., and Newell, N. D. 1968. Hinge grades in the evolution of crassatellacean bivalves as revealed by Permian genera. American Museum Novitates, 2328:152.Google Scholar
Bremer, K. 1995. Branch support and tree stability. Cladistics, 10:295304.CrossRefGoogle Scholar
Briggs, J. C. 1974. Marine Zoogeography. McGraw-Hill, New York, 475 p.Google Scholar
Broderip, W. J., and Sowerby, G. B. 1829. Observations on new or interesting Mollusca contained, for the most part, in the Museum of the Zoological Society. Journal of Zoology, 4:359375.Google Scholar
Bruguière, J. G. 1789. Encyclopédie méthodique. Histoire naturelle des Vers. Volume I. Panckoucke, Paris, 757 p.Google Scholar
Carpenter, P. P. 1864. Supplementary report on the present state of our knowledge with regard to the Mollusca of the west coast of North America. Report of the thirty-third Meeting of the British Association for the Advancement of Science; held at Newcastle-upon-Tyne in August and September 1863, p. 517686.Google Scholar
Carter, J. G. 1980a. Environmental and biological controls of bivalve shell mineralogy and microstructure, p. 69113. In Rhoads, D. C. and Lutz, R. A., R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.CrossRefGoogle Scholar
Carter, J. G. 1980b. Guide to bivalve shell microstructures, p. 645673. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Carter, J. G. 1990. Evolutionary significance of shell microstructures in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca), p. 135296. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume II. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., and Aller, R. C. 1975. Calcification in the bivalve periostracum. Lethaia, 8:315320.CrossRefGoogle Scholar
Carter, J. G., and Ambrose, W. W. 1989, Techniques for studying molluscan shell microstructure, p. 101119. In Feldman, R. M., Chapman, R. E., and Hannibal, J. T. (eds.), Paleotechniques. The Paleontological Society, Special Publication No. 4.Google Scholar
Carter, J. G., and Clark II, G. R. 1985. Classification and phylogenetic significance of molluscan shell microstructure, p. 5071. In Broadhead, T. W. (ed.), Mollusks: Notes for a Short Course, organized by D. J. Bottjer, C. S. Hickman, and P. D. Ward. University of Tennessee Department of Geological Sciences Studies in Geology 13.Google Scholar
Carter, J. G., and Lutz, R. A. 1990. Part 2, Bivalvia (Mollusca), p. 528, pls. 1–121. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume II. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., and Schneider, J. A. 1997. Condensing lenses and shell microstructure in Corculum (Mollusca: Bivalvia). Journal of Paleontology, 71:5661.CrossRefGoogle Scholar
Carter, J. G., and Seed, R. 1998. Thermal potentiation and mineralogical evolution in Mytilus (Mollusca; Bivalvia), p. 87117. In Johnston, P. A. and Haggart, J. W. (eds.), Bivalves: an Eon of Evolution—Paleobiological Studies Honoring Norman D. Newell. University of Calgary Press, Calgary.Google Scholar
Carter, J. G., and Tevesz, M. J. S. 1978. Shell microstructure of a Middle Devonian (Hamilton Group) bivalve fauna from central New York. Journal of Paleontology, 52:859880.Google Scholar
Carter, J. G., Barrera, E., and Tevesz, M. J. S. 1998. Thermal potentiation and mineralogical evolution in the Bivalvia (Mollusca). Journal of Paleontology, 72:9911010.CrossRefGoogle Scholar
Carter, J. G., Campbell, D. C., and Campbell, M. R. 2000. Cladistic perspectives on early bivalve evolution, p. 4779. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publications, 177.Google Scholar
Carter, J. G., Lutz, R. A., and Tevesz, M. J. S. 1990b. Shell microstructural data for the Bivalvia, Pt. VI, Orders Modiomorphoida and Mytiloida, p. 391411. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume I. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., Bandel, K., de Buffrenil, V., Carlson, S. J., Castanet, J., et al. 1990a. Glossary of Skeletal Biomineralization, p. 609671. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume I. Van Nostrand Reinhold, New York.Google Scholar
Chavan, A. 1969. Superfamily Carditacea, p. N543561. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Clench, W. J., and Smith, L. C., 1944. The family Cardiidae in the western Atlantic. Johnsonia, 13:132.Google Scholar
Conrad, T. A. 1831. Description of fifteen new species of recent, and three of fossil shells, chiefly from the coast of the United States. Journal of the Academy of Natural Sciences of Philadelphia, 6:256268.Google Scholar
Conrad, T. A. 1837. Descriptions of new marine shells, from Upper California. Journal of the Academy of Natural Sciences of Philadelphia, 7:227268.Google Scholar
Conrad, T. A. 1838. Report on the paleontological department of the survey [of New York]. New York Geological Survey Annual Report 2:1119.Google Scholar
Conrad, T. A. 1841. Description of twenty-four new species of fossil shells, chiefly from the Tertiary deposits of Calvert Cliffs, Maryland. Journal of the Academy of Natural Sciences of Philadelphia, 8:183190.Google Scholar
Conrad, T. A. 1842. Observations on the Silurian and Devonian systems of the United States, with descriptions of new organic remains. Journal of the Academy of Natural Sciences of Philadelphia, 8:228280.Google Scholar
Conrad, T. A. 1848. Observations on the Eocene formation, and descriptions of one hundred and five new fossils of that period, from the vicinity of Vicksburg, Mississippi; with an Appendix. Journal of the Academy of Natural Sciences of Philadelphia, Volume I, second series, p. 111134.Google Scholar
Cossman, M. 1921. Synopsis illustré des mollusques de l'Éocène et de l'Oligocène en Aquitaine. Mémoires de la Société Géologique de France. Paléontologie, 55:5112.Google Scholar
Cox, L. R., Newell, N. D., Boyd, D. W., et al. 1969. Part N, Mollusca 6, Bivalvia. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Cuif, J.-P., Denis, A., Jaillard, L., and Zhu, M. 1987. Discussion on definition method of microstructural units of invertebrate skeletons. Acta Palaeontologica Sinica, 26:4954.Google Scholar
Currey, J. D., and Kohn, A. J. 1976. Fracture in the crossed-lamellar structure of Conus shells. Journal of Materials Science, 11:16151623.CrossRefGoogle Scholar
Dall, W. H. 1881. Reports on the results of dredging, under the supervision of Alexander Agassiz, in the Gulf of Mexico, and in the Caribbean Sea, 1877–79, by the United States Coast Survey Steamer “Blake”, Lieutenant-Commander C. D. Sigsbee, U. S. N., and Commander J. R. Bartlett, U. S. N., commanding. Bulletin of the Museum of Comparative Zoology, 9:1144.Google Scholar
Dall, W. H. 1895. Contributions to the Tertiary Fauna of Florida. Transactions of the Wagner Free Institute of Science of Philadelphia, 3(3):483565Google Scholar
Davies, A. M. 1935. Tertiary Faunas, a Text-book for Oilfield Palaeontologists and Students of Geology, Volume 1, The Composition of Tertiary Faunas. Thomas Murby, London, 406 p.Google Scholar
Deith, M. R. 1985. The composition of tidally deposited growth lines in the shell of the edible cockle, Cerastoderma edule . Journal of the Marine Biological Association of the United Kingdom, 65:573581.CrossRefGoogle Scholar
Denis, A. 1972. Essai sur la microstructure du test de lamellibranches. Travaux du Laboratoire de Paléontologie, Université de Paris, Faculté des Sciences d'Orsay, 189, 15 pls.Google Scholar
Donovan, E. 1826. Naturalist's Repository, Volume 4, plate 124.Google Scholar
Douvillé, H. 1913. Classification des lamellibranches. Bulletin de la Société Géologique de France, sér. 4, 2:419467.Google Scholar
Ehrenbaum, E. Von. 1884. Untersuchungen ueber die Struktur und Bildung der Schale der in der Kieler Buchthnufig vorkommenden Muscheln. Inaugural-Dissertation zur Erlangung der Doktorwuerde der Philosophischen Fakultit zu Kiel, Leipzig, Wilhelm Engelmann. Zeitschrift fuer Wissenschaftliche Zoologie, 41:151.Google Scholar
Evans, J., and Shumard, B. F. 1857. On some new species of fossils from the Cretaceous Formation of Nebraska Territory. Transactions of the St. Louis Academy of Science, 1:3842.Google Scholar
Fang, Z. 1998. Revision and taxonomic position of the aberrant Devonian bivalve Beichuania , p. 185191. In Johnston, P. A. and Haggart, J. W. (eds.), Bivalves: An Eon of Evolution—Paleobiological Studies Honoring Norman D. Newell. University of Calgary Press, Calgary.Google Scholar
Fang, Z., and Morris, N. J. 1997. The genus Pseudosanquinolites and some modioliform bivalves (mainly Paleozoic). Paleoworld, Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Academia Sinica, 7:4969.Google Scholar
Farris, J. S. 1995b. Testing significance of incongruence. Cladistics, 10:315319.CrossRefGoogle Scholar
Farris, J. S., Kallersjo, M., Kluge, A. G., and Bult, C. 1995a. Constructing a significance test for incongruence. Systematic Biology, 44:570572.CrossRefGoogle Scholar
Férussac, A. E. DE. 1822. Tableaux Systématiques des Animaux Mollusques Classes en Families Naturelles, dans lesquels on a Établis la Concordance de Tous les Systémes. A. Bertrand, London, xlvii + 111 p.Google Scholar
Finlay, H. J., and Marwick, J. 1937. The Wangaloan and associated molluscan faunas of Kaitangata-Green Island Subdivision. New Zealand Geological Survey, Paleontology Bulletin, 15:1140 p., 17 pls.Google Scholar
Fischer-Piette, É. 1977. Révision des Cardiidae (Mollusques Lamellibranches). Mémoires du Muséum National d'Histoire Naturelle, nouvelle serie, série A, Zoologie, 101:1212.Google Scholar
Fleming, J. 1828. A History of British Animals, Exhibiting the Descriptive Characters and Systematical Arrangement of the Genera and Species… Bell and Bradfute, Edinburgh, xxiii + 565 p.Google Scholar
Gabb, W. M. 1864. Palaeontology of California, Volume I, section IV, p. 55217. Geological Survey of California.Google Scholar
Goldfuss, A. 1834–1840. Petrefacta Germaniae, zweiter theil. Arnz & Comp., Düsseldorf, 312 p.Google Scholar
Hall, J. 1858. Lamellibranchiata of the Coal Measures, p. 715717. In Hall, J. and Whitney, J. D., Report on the Geological Survey of the State of Iowa, embracing the results of investigations made during portions of the years 1855, 1856 and 1857, Volume 1, Pt. 2, Paleontology. Albany.Google Scholar
Hall, J. 1870. Preliminary notice of lamellibranchiate shells of the Upper Helderberg, Hamilton and Chemung groups, with others from the Waverly sandstone, Pt. 2. New York State Museum, 97 p.Google Scholar
Hallam, A. 1994. An Outline of Phanerozoic Biogeography. Oxford University Press, Oxford, 531 p.Google Scholar
Hedley, C. 1923. Studies on Australian Mollusca, Pt. XIV. Proceedings of the Linnean Society of New South Wales, 48:301316.Google Scholar
Hoare, R. D., Sturgeon, M. T., and Kindt, E. A. 1979. Pennsylvanian Marine Bivalvia and Rostroconchia of Ohio. Ohio Geological Survey Bulletin, 67:177.Google Scholar
Iredale, T., and McMichael, D. F. 1962. A reference list of the marine Mollusca of New South Wales. The Australian Museum, Sydney, Memoir, 11:1109.CrossRefGoogle Scholar
Kafanov, A. I. 1975. On the system of the subfamily Laevicardiinae Keen, 1936 (Bivalvia, Cardiidae): Mollusks, their System, Evolution, and Role in Nature. Abstract of paper read at the 5th All-Union Malacological Conference, Symposium 5, p. 145147.Google Scholar
Kafanov, A. I., and Popov, S. V. 1977. K sisteme kainozoiiskikh kardiodey (Bivalvia). Paleontologicheskii Zhurnal, 1977:5564.Google Scholar
Kawaguti, S. 1950. Observations on the heart shell, Corculum cardissa (L.) and its associated zooxanthellae. Pacific Science, 4:4349.Google Scholar
Kawaguti, S. 1968. Electron microscopy on zooxanthellae in the mantle and gill of the heart shell. Biological Journal of Okinawa University, 14:111.Google Scholar
Kawaguti, S. 1983. The third record of association between bivalve molluscs and zooxanthellae. Proceedings of the Japan Academy, ser. B, 59:1720.Google Scholar
Keen, A. M. 1936. Revision of cardiid pelecypods. Geological Society of America, Proceedings for 1935, p. 367 [abstract].Google Scholar
Keen, A. M. 1951. Outline of a proposed classification of the pelecypod family Cardiidae. Minutes of the Conchological Club of Southern California, 111:68.Google Scholar
Keen, A. M. 1969. Superfamily Cardiacea Lamarck 1809, p. 583594. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Keen, A. M. 1980. The pelecypod family Cardiidae: a taxonomic summary. Tulane Studies in Geology and Palaeontology, 16:140.Google Scholar
Klipstein, A. 1843. Beiträge zur geologischen Kenntnis der Östlichen Alpen, mit Geognostischen und Petrefactologischen Tafeln. Giessen, Georg Friedrich Heyer, 310 p. 20 pls.Google Scholar
Kobayashi, I. 1969. Internal microstructure of the shell of bivalve molluscs. American Zoologist, 9:663672.CrossRefGoogle Scholar
Kobayashi, I. 1971. Internal shell microstructure of Recent bivalvian molluscs. Science Reports of Niigata University, Ser. E, Geology and Mineralogy, 2:2750.Google Scholar
Kobayashi, I. 1996. Shell microstructure and biomineralization of Cardiidae, Bivalvia. Bulletin de l'Institut Oceanographique, Monaco, Numero Special, 14:277285.Google Scholar
Lamarck, J. B. De. 1805. Mémoire sur les fossiles des environs de Paris. Annales de Muséum National d'Histoire Naturelle, 6:117126, 214228.Google Scholar
Lamarck, J. B. De. 1809. Philosophie Zoologique, ou Exposition des Considérations Relatives à L'histoire Naturelle des Animaux, la Diversité de leur Organisation et des Facultés qu'ils en obtiennient … Paris, 2 vols., p. 1422, 1473.Google Scholar
Lamarck, J. B. De. 1819. Histoire Naturelle des Animaux sans Vertèbres, Volume VI, pars I. Histoire des mollusques. Verdiere, Paris, 543 p.Google Scholar
Lightfoot, J. 1786. A catalogue of the Portland Museum, lately the property of the Duchess Dowager of Portland, Deceased. London, 194 p.Google Scholar
Linné, C. 1758. Systema Naturae, editio 10, regnum animale 1. Stockholm, 824 p.Google Scholar
Lucas, J. S., Ledua, E., and Braley, R. D. 1991. Tridacna tevoroa Lucas, Ledua, and Braley: a recently described species of giant clam (Bivalvia: Tridacnidae) from Fiji and Tonga. The Nautilus, 105:92103.Google Scholar
Lutz, R. A., and Rhoads, D. C. 1978. Shell structure of the Atlantic ribbed mussel, Geukensia demissa, (Dillwyn): A re-evaluation. Bulletin of the American Malacological Union, 1978:1318.Google Scholar
Lutz, R. A., and Rhoads, D. C. 1980. Growth patterns within the molluscan shell, p. 203254. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York.CrossRefGoogle Scholar
MacClintock, C. 1967. Shell structure of patelloid and bellerontophontoid gastropods (Mollusca). Peabody Museum of Natural History, Yale University, Bulletin, 22:1140.Google Scholar
Meek, F. B. 1875. A report on some of the invertebrate fossils of the Waverly Group and Coal Measures of Ohio. Report of the Geological Survey of Ohio, Volume II, Geology and Palaeontology, Pt. II, Palaeontology, p. 269347.Google Scholar
Melvill, J. C., and Standen, R. 1907 (1906). The Mollusca of the Persian Gulf, Gulf of Oman, and Arabian Sea, as evidenced mainly through the collections of Mr. F. W. Townsend, 1893–1906; with descriptions of new species. Proceedings of the Zoological Society of London, p. 783848.Google Scholar
Miller, S. A. 1877. The American Palaeozoic fossils, a Catalogue of the Genera and Species, with Names of Authors, Dates, Places of Publication, Groups of Rocks in Which Found, and the Etymology and Significance of the Words, and an Introduction Devoted to the Stratigraphical Geology of the Palaeozoic Rocks. Published by the author, Cincinnati Times Co. Book and Job Rooms, Cincinnati, xv + 253 p.Google Scholar
Mohr, N. 1786. Fors⊘g til en Islandsk Naturhistorie. C. F. Holm, K⊘benhavn, 413 p.Google Scholar
Morris, N. J. 1978. The infaunal descendants of the Cycloconchidae: an outline of the evolutionary history and taxonomy of the Heteroconchia, superfamilies Cycloconchacea to Chamacea. Philosophical Transactions of the Royal Society of London, 284B:259275Google Scholar
Morris, N. J., Dickins, J. M., and Astafieva-Urbaitis, K. 1991. Upper Paleozoic anomalodesmatan Bivalvia. Bulletin of the British Museum of Natural History (Geology), 47:51100.Google Scholar
Nakazawa, K., and Newell, N. D. 1968. Permian Bivalves of Japan. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 35(1):1108, pls. 1–11.Google Scholar
Newell, N. D. 1942. Lake Paleozoic pelecypods: Mytilacea. State Geological Survey of Kansas, Report 10(2):180Google Scholar
Newell, N. D. 1957. Notes on certain primitive heterodont pelecypods. American Museum Novitates, 1857:114.Google Scholar
Newell, N. D., and Boyd, D. W. 1975. Parallel evolution in early trigoniacean bivalves. Bulletin of the American Museum of Natural History, 154:53162.Google Scholar
Newton, C. R. 1986. Late Triassic bivalves of the Martin Bridge Formation, Hells Canyon, Oregon: taphonomy, paleoecology, paleozoogeography. U.S. Geological Survey Professional Paper, 1435, p. 722.Google Scholar
O'Leary, M. A. 1999. Parsimony analysis of total evidence from extinct and extant taxa and the cetacean-artiodactyl question (Mammalia, Ungulata). Cladistics, 15:315330.CrossRefGoogle Scholar
Orbigny, A. De. 1844 (1843). Paléontologie Français Terrains Crétacés, Volume 3, Mollusques. G. Masson, Paris, 807 p., pls. 237–489.Google Scholar
Pelseneer, P. 1911. Les lamellibranches de l'éxpedition du Siboga, partie anatomique. Siboga Expeditie, 53a:1125Google Scholar
Ponder, W. F., Colman, P. H., Yonge, C. M., and Colman, M. H. 1981. The taxonomic position of Hemidonax Morch, 1871 with a review of the genus (Bivalvia: Cardiacea). Journal of the Malacological Society of Australia, 5:4164.CrossRefGoogle Scholar
Popov, S. V. 1973. Mikrostruktura I stroienie rakovini kaspiiskikh kardiid voprosi ikh proiskhozhdeniia. Biulleten’ Moskovskogo Obshchestva Ispatelei Prirodi, Otdel Geologicheskii, 48:158159.Google Scholar
Popov, S. V. 1977. Mikrostruktura rokovniy i sistematika kardiid. Akademiya Nauk SSSR, Trudy Paleontologicheskogo Instituta, 153:1124.Google Scholar
Popov, S. V. 1980. Stroieinie rakovini dvustvorchatikh molliuskov semeistva Cardiidae. Paleontology, Stratigraphy Reports Soviet Geology, XXVI International Geological Congress, Moscow, pp. 6166, 218219.Google Scholar
Popov, S. V. 1986. Composite prismatic structure in bivalve shell. Acta Palaeontologica Polonica, 31:326.Google Scholar
Popov, S. V., and Barskov, I. S. 1978. Shell structure in mollusks and its value in phylogeny and classification. Malacological Review, 11:152153.Google Scholar
Reeve, L. 1844. Conchologica Iconica: or, Illustrations of the Shells of Molluscous animals, II, Cardium .CrossRefGoogle Scholar
Runnegar, B., and Bentley, C. 1983. Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. Journal of Paleontology, 57:73–92. Savazzi, E. 1985. Adaptive themes in cardiid bivalves. Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, 170:291321.Google Scholar
Schneider, J. A. 1992. Preliminary cladistic analysis of the bivalve family Cardiidae. American Malacological Bulletin, 9:145155.Google Scholar
Schneider, J. A. 1994. On the anatomy of the alimentary tracts of the bivalves Nemocardium (Keenaea) centifilosum (Carpenter, 1864) and Clinocardium nuttallii (Conrad, 1837) (Cardiidae). The Veliger, 37:3642.Google Scholar
Schneider, J. A. 1995. Phylogeny of the Cardiidae (Mollusca, Bivalvia): Protocardiinae, Laevicardiinae, Lahilliinae, Tulongocardiinae subfam. n. and Pleuriocardiinae subfam. n. Zoologica Scripta, 24:321346.CrossRefGoogle Scholar
Schneider, J. A. 1998a. Phylogeny of stem-group eucardiids (Bivalvia: Cardiidae) and the significance of the transitional fossil Perucardia . Malacologia, 40:3762.Google Scholar
Schneider, J. A. 1998b. Phylogeny of the Cardiidae (Bivalvia): phylogenetic relationships and morphological evolution within the subfamilies Clinocardiinae, Lymnocardiinae, Fraginae and Tridacninae. Malacologia, 40:321373.Google Scholar
Schneider, J. A. Phylogenetic revision of the Cardiinae (Bivalvia, Cardiidae): Indian Ocean—tropical American disjunct distributions, New Zealand—South America biogeographic connections, and description of a new subfamily Orthocardiinae. Accepted, Zoological Journal of the Linnean Society.Google Scholar
Schroeter, J. S. 1786. Einleitung in die Conchylien-Kenntnis. Gebauer, Hall, xvi + 596 p.Google Scholar
Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbiosis. Historical Biology, 3:289311.CrossRefGoogle Scholar
Sharman, G., and Newton, E. T. 1897. Notes on some additional fossils collected at Seymour Island, Graham's Land, by Dr. Donald and Captain Larsen. Proceedings of the Royal Society of Edinburgh, 22:5861.CrossRefGoogle Scholar
Shimamoto, M. 1986. Shell microstructure of the Veneridae (Bivalvia) and its phylogenetic implications. Science Reports of the Tohoku University, Sendai, Second Series (Geology), 56:139.Google Scholar
Solander, D. C. 1766. Description of species, p. 143. In Brander, G. (ed.), Fossilia Hantoniensia Collecta, et in Museo Britannico Deposita. London.Google Scholar
Sorenson, M. D. 1999. TreeRot, version 2. Boston University, Boston, MA.Google Scholar
Sowerby, G. B. 1825. A Catalogue of the Shells Contained in the Collection of the Late Earl of Tankerville, Arranged According to the Lamarckian Conchological System; Together with an Appendix, Containing Descriptions of Many New Species. London, 92 p.Google Scholar
Sowerby, J. De C. 1826–1829. The Mineral Conchology of Great Britain. Volume 6. B. Meredith, London, 235 p.Google Scholar
Sowerby, G. B. 1833. New species of shells contained in the collection of M. Cuming. Proceedings of the Zoological Society of London, p. 8287.Google Scholar
Sowerby, G. B. 1834. The Conchological Illustrations. London.Google Scholar
Speden, I. G. 1970. The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Pt. 2, systematics of the Bivalvia. Yale University Peabody Museum Bulletin, 33:1222.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. Journal of Paleontology, 42:214229.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology, 46:165212.Google Scholar
Stephenson, L. W. 1923. The Cretaceous formations of North Carolina. North Carolina Geological and Economic Survey, 5(1):1604Google Scholar
Stewart, R. B. 1930. Gabb's California Cretaceous and Tertiary type lamellibranchs. Academy of Natural Sciences of Philadelphia, Special Publication, 3:1314, pls. 1–17.Google Scholar
Stoliczka, F. 1870–1871. Cretaceous Fauna of southern India. 3. The Pelecypoda, with a review of all known genera of this class, fossil and Recent. Geological Survey of India, Palaeontologica Indica, Ser. 6, 3:1537.Google Scholar
Suzuki, S. 1984. Preliminary report on the shell structure of some cypraeid gastropods. Bulletin of Fukuoka University of Education, 34:6375.Google Scholar
Swofford, D. L. 1999. PAUP. Phylogenetic Analysis Using Parsimony ( and Other Methods), version 4.b2a. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1942. The Oceans. Prentice-Hall, Englewood Cliffs, New Jersey, 1,087 p.Google Scholar
Taylor, J. D. 1973. The structural evolution of the bivalve shell. Palaeontology, 16:519534.Google Scholar
Taylor, J. D., and Layman, M. 1972. The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology, 15:7387.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1973. The shell structure and mineralogy of the Bivalvia, II, Lucinacea-Clavagellacea, Conclusions. Bulletin of the British Museum (Natural History), Zoology, 22:253294.CrossRefGoogle Scholar
Thiele, J. 1935. Handbuch der Systematischen Weichtierkunde. Volume 2. Gustav Fischer, Jena, p. 7791154.Google Scholar
Trench, R. K., Wethey, D. S., and Porter, J. W. 1981. Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biological Bulletin, 161:180198.CrossRefGoogle Scholar
Tryon, G. W. Jr. 1870. Descriptions of new species of marine bivalve Mollusca in the collection of the Academy of Natural Sciences. American Journal of Conchology, 6:2324.Google Scholar
Umeshita, H., and Yamasu, T. 1985. On the morphology of a species of a strawberry cockle Fragum sp. The Biological Magazine of Okinawa, 23:50. (In Japanese)Google Scholar
Vokes, H. E. 1967. Genera of the Bivalvia: a systematic and bibliographic catalogue. Bulletins of American Paleontology, 51(232):111394.Google Scholar
Voskuil, R. P. A., and Onverwagt, P. J. H. 1989. Inventarisation of the Recent European and west African Cardiidae (Mollusca, Bivalvia). Gloria Maris, 28:4986.Google Scholar
Waagen, L. 1907. Die Lamellibranchiaten der Pachycardientuffe der Seisser Alp nebst vergleichend palaeontologischen und phylogenetischen Studien. K.-K. Geologische Reichsanstalt, Wien, Abhandlungen, 18:1180.Google Scholar
Wade, B. 1925. The fauna of the Ripley Formation on Coon Creek, Tennessee. U.S. Geological Survey Professional Paper, 137:1272.Google Scholar
Watson, M. E., and Signor, P. W. 1986. How a clam builds windows: shell microstructure in Corculum (Bivalvia: Cardiidae). The Veliger, 28:348355.Google Scholar
Wise, S. W. Jr. 1970. Microarchitecture and deposition of gastropod nacre. Science, 167:14861488.CrossRefGoogle ScholarPubMed
Yamasu, T. 1988a. Animals in coral reef 3—Symbiotic relationships in coral reef, p. 123145. In Nishimura, M. (ed.), The Coral Reefs of Okinawa. Nana: Okinawaken Kankyokagaku Kensa Centre. (In Japanese)Google Scholar
Yamasu, T. 1988b. Symbiosis between marine animals and algae. Heredity, 42:1220. (In Japanese)Google Scholar
Yonge, C. M. 1969. Functional morphology and evolution within the Carditacea (Bivalvia). Proceedings of the Malacological Society of London, 38:493527.Google Scholar
Yonge, C. M. 1978. Significance of the ligament in the classification of the Bivalvia. Proceedings of the Royal Society of London, ser. B, 202:231248.Google Scholar
Zardini, R. 1981. Fossili Cassiani (Trias Medio-Superiore). Atlante dei Bivalvi della Formazione di S. Cassiano Raccolti nella Regione Dolomitica Attorno a Cortina d'Ampezzo. Edizioni Ghedina, Cortina d'Ampezzo, 16 p., 40 pls.Google Scholar