Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-06T15:13:48.175Z Has data issue: false hasContentIssue false

The implications of data base management systems to paleontology: a discussion of Jurassic ammonoid data

Published online by Cambridge University Press:  19 May 2016

Paul L. Smith*
Affiliation:
Department of Geological Sciences, 6339 Stores Road, University of British Columbia, Vancouver V6T 2B4, Canada

Abstract

Data from current research dealing with Jurassic ammonoids and stratigraphy of western North America are being stored in a computer file called AMMON using a data base management system. Each ammonite is described by up to 94 descriptors divided into the following six categories: taxonomy, quantitative morphology, qualitative morphology, stratigraphy, locality-catalogue information and general remarks. Data entry is facilitated by the use of a template on a video display terminal, the use of code numbers instead of full names and the bulk entry of hierarchic data. The computer can be used to speed fossil identification and retrieve geologic data by matching lists of descriptor states for a given specimen against those stored in the data bank. By interfacing with statistical analytical systems a ‘profile’ of a given taxon can be generated showing ranges of morphologic variation for any stage of ontogeny. Multivariate techniques are readily employed and subtle patterns of covariation more easily assessed. The data base may also be questioned to instantly generate taxonomic lists by zone, geographic area, lithostratigraphic unit, etc. (or any combination thereof) so that its research potential is considerable.

AMMON is a prototype meant to serve as a basis for discussion in developing a globally acceptable ammonoid data base. If code numbers for taxonomic, morphologic and stratigraphic data are standardized, information can be exchanged internationally using magnetic tapes and then decoded by the computer into any language. As data bases proliferate, they will inevitably make paleontological information more readily accessible to the specialist and non-specialist alike.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkell, W. J., Kummel, B. and Wright, C. W. 1957. Mesozoic Ammonoidea, p. L80–L490. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part L, Mollusca 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Blasco, G., Levy, R. and Nullo, F. 1978. Los amonites de la formacion Osta Arena (Liasico) y su posicion estratigrafica; pampa de Agnia (provincia del Chubut). Congreso Geologico Argentino, Actas, 7(2):407429.Google Scholar
Chamberlain, J. A. Jr. 1981. Hydromechanical design of fossil cephalopods, p. 289336. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematics Association Special Volume, 18.Google Scholar
Dean, W. T., Donovan, D. T. and Howarth, M. K. 1961. The Liassic ammonite zones and subzones of the northwest European province. British Museum (Natural History) Bulletin, Geology, 4:438505.Google Scholar
Donovan, D. T. 1967. The geographical distribution of Lower Jurassic ammonites in Europe and adjacent areas. Systematics Association Publication, 7:111134.Google Scholar
Donovan, D. T., Callomon, J. H. and Howarth, M. K. 1981. Classification of the Jurassic Ammonitina, p. 101155. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematics Association Special Volume, 18.Google Scholar
Donovan, D. T. and Forsey, G. F. 1973. Systematics of lower Liassic Ammonitina. University of Kansas Paleontological Contributions, 64:118.Google Scholar
Frebold, H. 1967. Position of the Lower Jurassic genus Fanninoceras McLearn and the age of the Maude Formation on Queen Charlotte Islands. Canadian Journal of Earth Sciences, 4:11451149.CrossRefGoogle Scholar
Frebold, H. 1970. Pliensbachian ammonoids from British Columbia and southern Yukon. Canadian Journal of Earth Sciences, 7:435456.CrossRefGoogle Scholar
Gabilly, J. 1976. évolution et systématique des Phymatoceratinae et des Grammoceratinae (Hildocerataceae Ammonitina) de la région de Thouars, stratotype du Toarcian. Mémoires de la Societé Géologique de France, 124:1196.Google Scholar
Hall, R. L. and Westermann, G. E. G. 1980. Lower Bajocian (Jurassic) cephalopod faunas from western Canada and proposed assemblage zones for the lower Bajocian of North America. Palaeontographica Americana, 9:193.Google Scholar
Hallam, A. 1983. Early and mid-Jurassic molluscan biogeography and the establishment of the central Atlantic seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 43:181193.CrossRefGoogle Scholar
Hillebrandt, A. von. 1982. Faunas de amonites del liasico inferior y medio (Hettangiano hasta Pliensbachiano) de America del Sur (excluyendo Argentina). Cuncas sedimentarias del Jurásico y Cretácico de América del Sur, 2:499538.Google Scholar
Howarth, M. K. 1973. The stratigraphy and ammonite fauna of the Upper Liassic Grey Shales of the Yorkshire coast. British Museum (Natural History) Bulletin, Geology, 24:235277.CrossRefGoogle Scholar
Jones, B. 1979. Data storage and retrieval for the palaeontological collections, University of Alberta. Special Papers in Palaeontology, 22:175187.Google Scholar
Kidson, E. J. 1982. Voice access to computers for paleontologic data (abstract). Journal of Paleontology, 56(2), part 2:15.Google Scholar
Kullmann, J. and Wiedmann, J. 1970. Significance of sutures in phylogeny of ammonoidea. University of Kansas Paleontological Contributions, 47:132.Google Scholar
McLearn, F. H. 1932. Contributions to the stratigraphy and paleontology of Skidegate Inlet, Queen Charlotte Islands, B.C. Transactions of the Royal Society of Canada, 4:5180.Google Scholar
Morton, N. 1975. Bajocian Sonniniidae and other ammonites from western Scotland. Palaeontology, 18:4191.Google Scholar
Price, D. 1984. Computer-based storage and retrieval of palaeontological data at the Sedgwick Museum, Cambridge, England. Palaeontology, 27:393406.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41:4365.Google Scholar
Schlegelmilch, R. S. 1976. Die Ammoniten des süddeutschen Lias. Gustav Fischer Verlag, Stuttgart, 212 p.Google Scholar
Smith, P. L. 1980. Correlation of the members of the Jurassic Snowshoe Formation in the Izee Basin of east-central Oregon. Canadian Journal of Earth Sciences, 17:16031608.CrossRefGoogle Scholar
Smith, P. L., Thomson, R. C. and Tipper, H. W. 1984. Lower and Middle Jurassic sediments and volcanics of the Spatsizi Map Area, British Columbia. Geological Survey of Canada, Paper 84–1A:117120.Google Scholar
Sylvester-Bradley, P. 1972. Geobiology and the future of palaeontology. Quarterly Journal of the Geological Society of London, 128:109117.CrossRefGoogle Scholar
Taylor, D. G. et al. 1983. The stratigraphy and biofacies trends of the Lower Mesozoic Gabbs and Sunrise formations, west-central Nevada. Canadian Journal of Earth Sciences, 20:15981608.CrossRefGoogle Scholar
Taylor, D. G. et al. 1984. Jurassic ammonite biogeography of western North America: the tectonic implications, p. 121142. In Westermann, G. E. G. (ed.), Jurassic-Cretaceous biochronology and biogeography of North America. Geological Association of Canada Special Paper, 27.Google Scholar
Westermann, G. E. G. 1966. Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrbuch für Geologie und Palaöntologie Abhandlungen, 124:289312.Google Scholar
Westermann, G. E. G. and Riccardi, A. C. 1976. Middle Jurassic ammonite distribution and the affinities of the Andean faunas. Primer Congreso Geologico Chileno, 1:2329.Google Scholar